S)

UNIT - |

Digital Computers
Introduction, Block diagram of Digital Computer, Definition of Computer
Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations
Register Transfer language, Register Transfer, Bus and memory transfers,
Arithmetic Micro operations, logic micro operations, shift micro operations,
Arithmetic logic shift unit.

Basic Computer Organization and Design
Instruction codes, Computer Registers Computer instructions, Timing and

Control, Instruction cycle, Memory Reference Instructions, Input — Output and
Interrupt.

————m—

Department of CSE Page 1

F _ana O T —_— —
, . T |
CompiR, - ORGpveaTioy AT P
DiiTaL COMPUTERS
ONNNANNAS
Tnj;quuJEO~ : o Uarfows
foai o digld o oD %&A femo
e Computlts 42 e 5
WH%’ “ . Dda i cmj‘tvw "a’gﬁ
L oy -
o T o Aukdrsdsd S8 7
ol T
A ool 4f
% L) enlilies.
> Qallwah %
> s b e
fhe Campuls castse 7y, Gy
e Hasdoots ¢g dedan hat SR
Compornens o ol liomadheni ok Jhat
- Ny doEE 0 Huckfons anel i
< Qﬂ i? : 0 0? B coniT J,Z/'.sk/)
Czsmpu‘b“ Aj [t Vafouws o i xaum.
g Datforr L calticd & P
dhe Compebs ™ fn»\ww{f“qumwmm
\QQ /szwmcﬁ g m(molPLJo,Gﬁp éj 8
A doke dhat 2. 05
dota ¢ copplil oo Ll o
o o 5
5 witlc ol
bl Wgo‘% pooda Goer? it [tee)Contasns el dﬁ Ang
‘/IFV*é\)Y . oy‘:tj('j Talo, o % 3': & J
0 U»X\'i‘t o a_,\ﬂ,' va) 4 wenplR 00“4,
Oondzd Qi d« Uu&(j “"% el
(8} OY\O

conuls Lindeoo AsRege ot 0

(JEN
\ The e - hardom —acen memong. ["Re M)

Department of CSE Page 3

Th fnpuf Ll mPk Coded j'vmn)fm o Pamas 8
em;oj},i d'mr\ Q"ehthmm:\fw’mm(kw*hg‘“

|Department of CSE Page 4 |

2m
/)(un,;
1} (I)JJ‘ : J}J‘ ‘f’wb uc_}Frv‘w

o
s oL ¥4 o)

(9om.. neumann
Qh a ‘ /h) /\ Yoke

})(Lo Qe tWM M L
. o YO + ;- o nemg
%lu\ UU rp“‘d . < l\m(}‘fu) ij i) M."L{’»J‘J)h

kcw‘ cl O'U

AL , A LN (
(%\\:\(l f;(ra'\“‘ot st ‘«\L'[J CRU'U
Voo oMo o lsd
‘5?"\“.‘\ a.\:cu:{‘,(3 ("P“vt‘:\h on UL - u L:‘j Ce ﬂ*ﬂtmd
' p A AMYp" ¥ [= an .
bilianers O ﬂ gy /1 /"7"“ ~
g Lot ' l \ A o \.{‘ (
o : (§WE b
he AL 1} a S
o b » J L
e ety T o hag & EWER
’ “ ! (nll - . { /P,JJU) CIYY‘-{'U-}“ L
y Fap” o

A g ‘{ul allhn de Lhe
D oThe M : ,‘,,:(1,314qr¢.>
{{” \ . |;.«J \\
" 1 { v

tand a C ’ k?ﬂ—)' ’
lL J}ﬂ L In{) ull; na maoun O '
| . O R

:."""(,%' Yow
‘¥ ¢
V Mok 7T /Ram):
amud " - (hnn‘ Vi
2) hLan I"T Ly rramd 1 ; —h', s !

|

‘\t‘; b('l"(“!“ ~ 2 4 4

J r}mno!‘"“ ™ DO b
NEIWD '\“(" o . ‘“xc(t/) (“h.“ : h{ o G L“o}‘ﬂ ox
' “1 b Lt .l‘\“t . 4?‘ *(iuj
/ AN A 3 NS :
<) ‘.‘ Cem »l'{ sk A A,U(“\T ‘ ’m‘()de, (fr\bl

¢ Yo |

45K »pm(.”?.w:‘

, (1) ban A
\l‘o l"'j‘“"' J; B

Al mmz-'\)
“ll\‘)tl(\"'b (‘ YEw (

[:*) T Ao u‘nludnu) ' Afa(\\u en
. \ s kﬂl)&{q-lol (’ft fl‘)"kl’ ans Qj
w(: (

t\a}\)oucl d_@.‘é,"_’_ Ao Ao o)
TR e 1 Hou Ve Qe clive = ,!',‘ ga,,f
he o). Mot Qs Conrnac b (

L3 /}tp(\lall muﬂm\j

(
| deSen
{U\C‘ W :

(‘;l \ vs.ﬁ”“-l} [
ok
foy (j“ B {1

deader

Depal LLLITIIL UL WO LY

ragc v

L(\)_\Q\ ﬁ 'A —1
f ‘ vb { & AL menoy Qe e(V)
&.‘?n {\\I; Coune | L.U\Lu L »

» "\n‘
ot p S Heee Jo o mamoxy Keald Jm MR

(“’(\(Q\ -GL\ Loy ke (A

leda
¥ W %c i{yt’.l 4 ¢))Ll
Suhudtne Qo 0 L mlﬁa ol (trlﬁLcltLtt Q. "=
(l‘ (‘R A : h‘ el (\(L‘
de?C |\LJ “ Lt" ; Qa y\o‘ , . k/

C 6\\'\&& %) ()l(‘lf a J(: wllf)c vwlc -\.i fj

GQ il

Qn
b fon g -
20> .
& k e \\“\\‘C‘“\ l)(ﬂu ot
,5\\\““\\-\»(11\((“!. 4+ R : \Lﬁ‘ul / (? l J ,e)“f
A P l phH A O),ﬂ’cu L&
\ ﬂlcmlf e o moke [3 DAL
H(Uvau\ , Q k\lu‘{lkﬂ e U l (00\\- NL‘U‘\“U‘
P aeene .
- “\1 ‘ [|‘\u\. H(U\o«'\l(‘ k “{(c‘\tcl’\ JLhet
L'l\\:\ Loe D ' 2 0
Q NULI S
Dapé (e
"&Q(\({(\\(l P‘[

Department of CSE Page 7

Department of CSE Page 8

‘;}N»\ iﬁfoﬁu e evnnlia) -h .ﬁ\abu‘m‘? ¢*Uc:¢dv‘on

hed .
Dt ¥ Qtrb (,LQ,')

Y
Cendeiho .uu t,rmbud#’rm oAl Ncn_n@j (%h’r,)u

Mcm(j Adduw R'T"[(NMA
) « J alm W0 m.ﬂnwrn!
CIWCI.L(\D ;Uu Ct.ul(\l'“/v) j (18

NJ'NU % Re Q/!(M "’]13]?')* }h Lo (l.)yj.ﬁhn ‘L’ Wmf:y

Conterino ”’""'\ ;2 cln)n o
5

O)\ n\l Ql"ﬂ\(‘(] moal KO”'\(AI KO(\DI

.'t_g_o_ig,ér -
“The Xojll){ul Jha

‘)i i emLomn
& (L’)Llﬂl&lf' (‘alﬂm (}

ij:Uu Rk :\N’ % A“ %y(ok (‘}(z’f, OE“(J
(Ofee dralgra it | R (’j' (owwm:) V\ﬂgv)4>'

g 0 20 MR

r\\\.m.ﬁV not, A '(j ()r

. /l{)(i')(l ‘ (‘l

f Rnr(‘lr) fa TA l(lClU (V%)) An.
Aeldeem Lo Zf&,(b .

i? R((fm fzm{lut\\m\ F\DtJ
A ’\‘(.txl\&l (,\(“ Leee 0 3

.
Q Aoyuamo Ivom ©

r\wvd)uu’ An
LM\O/J\ !P(\().h 0

) Ahe " wnb e4D
Q (\00 L'(’!\(. 0 ruxfj*{‘) .

i RN
& mam R (1) %\%m.fu(, J S8y g didnal

g 4 0

\s~
\ ‘@c(u) iﬁrﬁb l
Lol Jm

o Uwuﬁ g B_/S)’ougﬁ’l

{,Uu mumua wnit
Im! .,'I/) ("1!/’ ¥ rqliol
g (7“

ANOG BT Cex mﬁ"u)’

%"
)

JJ’I L

) |

raSC.J

cf,do‘hma.tlon i%amda dm % X?fatu ‘{‘EW«:&; &"wé’;:/%‘»
on dmba&"c dwm 8 Meons g a ﬁrﬂwm wmz.
The Atedonent
N <R
enss ﬁwde» Z/H& Conlank 9 %ﬁw& R, Hlo xl;;;&z

R,
0 o
3ok iéggo am Gxp ,C‘M}gm’ ‘ °ZEAA o Lok olBgvam
027\ [004 Al ,mwmwﬁhm;z Xlla Zé:b g Vi)
'ﬂ‘n(—?& oY @:\:m wg JX) Xﬂf)ﬂ/)eni a o d i
dox 3 Hs nome d He ?A%ta Sudde. olfc(Twwn Ca).o E
o The Sndffduel LR ey i e A e R I d:cgrm().
o The nuwben) Kb B o (B fepla con ke maskad on
Jhe box s o olfadvmn(c} ! w - a m@ﬂ
o A Ib-bst Sl S Pubibond anks) i i
.'Bik H\ S{MM@V*J% AmLJ’L’(d’)Y(Dwé)aﬂ
1 e ”Hlli/jmbc‘! Hd%v %?Q?&)
3 %uzg I o cwuﬁ (j
o sl o, PC.
® Jha hom e 1b-b2 @;wia L g o
v etk P (o) o Pe() R to s Low-os tg&

(1) b e fs _ovdey bAT -
R ("‘“jf Hs Zi.!bcmlm %122 Ld s

" §

W dw%mﬁ» o L
e ?AS;W the Confent 22 HHe /Saucuzafwb R, dmm»d\m?
Covbol Aunchtn:-
-7-»2 tot ol i%angrzh do oww &é wdtt Pm,,uam?uo;

9 4
Wcmdﬁ\°m.rﬁawke/ﬁouMEJWam?ma,}ﬂu febement

2| (Par) han (Rye— R,
osﬁmfP\foamclA?&m mﬁmaﬁa{w
A N S S N R i

!
|Depax LILITIIL UL WO L 1 agc 1u |

- \ 4 ". “.]“.9‘6 -Oan ;
o Q?g{a %, Ron & Joadd Sopd i 3, Mho:;ahg:u
Bari P 4
o D amume Mot e Codiel VBaufalle I Brehonined eith He
Aave otk an The O app!fd 4 e hzzﬁ,n.

ﬂ_"zé,“‘f" ::D?*émm Bxplnalson -
¢ P R adtivalid b He Colliol Aeckin a s xim%7 ecigffz‘f
& clock (P-.JAQ ab e L.
* The mw ‘Po/lit).c Taadten ¢ dfe clock i
t‘;‘y“':l” Hs lDM’ chu}- ac&u arol ffie dadan L'."‘\{kblff }2 Qe.? oLk
o o o ud'
‘omdxclh“fo HRe anulﬂ‘ & paa e oA 'tlamjz‘v

@ Fo ’ L t 0 ¢ ‘

& & P femaina cucline -

CS\U arcud L&U\Q \/Qﬁl.; cloek ‘;\J.u % ansibon Cd‘hll
C

pwl,i of Lome EM.

Gatlable i I8
e th r}_ﬁd} "Hit CLOCk i_; I\L\f ﬁ!(_LLLoLi,(l an & (lat

xﬁai)[ﬂ (tﬁcu\ndﬁ‘\ (3}1\& m,uxb :

r) Q , O ’H } l ' © Q l 3
) 4L) ‘E‘ U:U._(O L1} & { ¢ '(e ?ﬁ
€ Lo a'\ 'LLM(J L Qu Q‘m“' d x :7

t‘ et 5 ! 4 E Cwat
e Ebt’.f\ 'l’ﬁoujcs e szjicrl Cu-\oh’hm Auceh an ('P 1)(e &t ‘v€ A(jﬁj c
b.l Mo f +He Ge tmj Fam #&\ cloeo not Otan Lqu.) e F\(fjw L2
(a ARk Porghie "t\oum‘? Kea He clock all S I

Cacted b

nape! 7 Pantc Syl Jor Regpls o
éd\v\}w’ { [:Deam?]’)}?m 4 anm,ﬁa

o WW

“Posendheas) Demolis o Pack 4 % el | Ralo), Ry0)
s evrye Denols ‘lL\oumdu ?rdmmkon ’1224——12,
s Sepatalis dovo weeoperatims [&),
g i R‘ﬁ—tzlj
bl ot

L V_fﬁ Lan?c /1dm5o'eo g +fe lezo[‘; j&% AN

Department of CSE Page 11

E 0 Redfy owe doncls o
% Zjﬁn il (7 3

R

A

Qpeilyiog e Ren i Lk o8 (A} i Lo A fj
o r o el

60 a &}fotﬁ

o o ‘comw\) wﬁae{,wg oo o4 Moke Gpetalions
E Fob an owcle ab b Aam fia.
St bt TR SR GRS %c{mﬂw; o
b e 30 T
Y\n?fb[&a o’ahé’a fne Commen b, ot} 317&(5*% Aok

o “THG K?mquvnwW) Gpetation 0

oot eola,z tlfgaum d/@%jlﬂf’/l h?&iw Ld a.{;?fw' Dodtiee - s

Deo‘?c'\ab CO""PLLE’ 0 ¥
(. A
he hagﬁt) Ao
(Pe.
sl SR olg S Culled :
i Hi thf R’?@m el R, o o o 2
YR gn-!ﬁtawuwo“ mhgﬂg‘“j‘”[uwww
l-r?u Lo onv?cﬁ,uc& é’e‘f/ Y9, do
&o Aequenct 670*“ §) I n-
Buo ohd tleneg A |
= g e s l— ane/ ,"hjj\a 't
K | : anolfeh,
be Provi Fo 'fﬁwwdex rf\dormabcm . O u (o

Wﬁxm«&a%a&w“‘m éemma‘iolcuw"mﬁjaepuob'

Donne owe tiaed belween €ach WA&]M all o &m}/‘io[i‘u;»ﬁo H&.

Department of CoE Page 12

Wl e It hem ‘ . E
e ‘4 i r‘{)’“”"‘ : ‘;” d" A“Md"u'l(h] ciandly\mab'mn L)d&m,,

"'t .(ll.\ dn | Inu'“['(t "/{U‘ru ¥ C'U'l("/“'a-’f(m & 3 Gmmm ‘)M A%Q\i}{]

/

"" b ,j(nn'uh ﬂmm’fnlo ?? &k 9 Cornmen .,Qlf\.w, Orne d‘" Cach)
“.'ii ll? 0 fu -j'«‘;s/n, »-\N'w?"{ TN '; m’\qﬂy n.fnaowma.h‘(m £ twrvlaa,uic/ ’
O o @ B

sl ‘) ([u:l by MHu
(‘nnﬁ'-.,, L I olebin it cofPeh Kn?w[lc % nels (/

b ‘ b t"l'-(d 1lu|'i'«u'mn Y\Of\)/)('u &Cn.f\n({g)g

[+ plexer
whbb ol -lP/‘lpx.zm,

ﬂ;;}iobl u)VwN l’ﬁ)aﬁ

(: :
Camrmen Dan "QHJJ(IM ”_hnj
\

/ /'(1/ W)
d C o) J)rl! /\l(Jl m

‘ : A Aowuter
“The \nul-l'«'plrrnu Aaleel

(L) ? \\ 1A 1“1‘ ' Yy ‘“[] WA/) .
) p
' \ ‘A RA A un \ n ’){(I(C{\ \

4 x| 4 4 L s 4 x |
MUK S NMuk 2 nux | Mux 0
-
P I S R 0 § g Ul 3 & Vo

DQpartment of CSE Page 13

k

h .fnyu 0

e, (ant lir./
€mmf’[" &ttw , Q ,"n-?;,fu L C
(¢ ’(" Q& llo’ A)

Q;) Mux). Jx cowre I inpu’ " |55 € e Nane /’Yj “f:«(‘w
‘ s s . ¥
g The k/(ta‘mm /i’\f (23 “;‘i Con L Lot A Ma (-laln< Sh P“L%
Ban s o M T g el
0 (‘,‘L,k'*\"f'(l't'“k *o Y\f_-m e, ("'{r‘u 0 })_f[)‘ *y "H“
OW\E rr‘} e B h‘.Lll 3‘1’,){{ s the v 1 Ye cl_](‘l,Lf) 3
Tav) chﬂ '\ bilks ?) 7

4
| o mugdHple TN
4‘\1}\.\‘»1"-) ' ,‘ VX v j ;‘wfl)
D Mt e ’

| x\\._.’amhj L 4

ung
(T —p— %c’w’m KEJ:& f‘,,
L, SUE . A X Rintebs. & f"(i,
r,ré_."f e)w-‘;“;,‘; f L‘“
l L4 n — ——
0 &}
\ 0 &
L e ™
i ?;u ,tuo Al Ko 4 tnes 4 ane/ \“:O Qe Conpec [1 o/

doike At Spubs 4 ol four ol Fploera.

The ,‘kh(“’%rn E(V‘V\rn (“u o Y l4;\(“ ‘DAL) 7 e

e and Do Ho Bl R Gt Bt Commen

Department of CSE
Page 14

Unit-1: REGISTER TRANSFER AND MICROOPERATIONS

CONTENTS:

|

[

[

Register Transfer Language
Register Transfer

Bus And Memory Transfers
Types of Micro-operations
Arithmetic Micro-operations
Logic Micro-operations
Shift Micro-operations

Arithmetic Logic Shift Unit

BASIC DEFINITIONS:

J

|

A digital system is an interconnection of digital hardware modules.

The modules are registers, decoders, arithmetic elements, and control logic.

The various modules are interconnected with common data and control paths to form a digital
computer system.

Digital modules are best defined by the registers they contain and the

operations that are performed on the data stored in them.

The operations executed on data stored in registers are called microoperations.

A microoperation is an elementary operation performed on the information stored in one or more
registers.

The result of the operation may replace the previous binary

information of a register or may be transferred to another register.

Examples of microoperations are shift, count, clear, and load.

The internal hardware organization of a digital computer is best defined

by specifying:
1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information stored in the
registers.
3. The control that initiates the sequence of microoperations.

REGISTER TRANSFER LANGUAGE:

O

O

The symbolic notation used to describe the micro-operation transfer among registers is called RTL
(Register Transfer Language).

The use of symbols instead of a narrative explanation provides an organized and concise manner
for listing the micro-operation sequences in registers and the control functions that initiate them.

Department of CSE Page 15

[

[

A register transfer language is a system for expressing in symbolic form the microoperation
sequences among the registers of a digital module.

It is a convenient tool for describing the internal organization of digital computers in concise and
precise manner.

Reqisters:

[

Computer registers are designated by upper case letters (and optionally followed by digits or
letters) to denote the function of the register.

For example, the register that holds an address for the memory unit is usually called a memory
address register and is designated by the name MAR.

Other designations for registers are PC (for program counter), IR (for instruction register, and R1
(for processor register).

The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting
from 0 in the rightmost position and increasing the numbers toward the left.

Figure 4-1 shows the representation of registers in block diagram form.

Figure 4-1 Block diagram of register.

R1 7 6 5 4 32 10|

(a) Register R (b) Showing individual bits

15 O 15 8 7 0
R2 PC (H) PC (L)

(c) Numbering of bits (d) Divided into two parts

The most common way to represent a register is by a rectangular box with the name of the
register inside, as in Fig. 4-1(a).

The individual bits can be distinguished as in (b).

The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c).
16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for
low byte) and bits 8 through 15 are assigned the symbol H (for high byte).

The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order
byteand PC (8-15) or PC (H) to the high-order byte.

Register Transfer:

0

(I R I I I

Information transfer from one register to another is designated in symbolic form by means of a
replacement operator.
The statement R2<— R1 denotes a transfer of the content of register R1 into register R2.
It designates a replacement of the content of R2 by the content of R1.
By definition, the content of the source register R 1 does not change after the transfer.
If we want the transfer to occur only under a predetermined control condition then it can be
shown by an if-then statement.
if (P=1) then R2— R1

Department of CSE Page 16

[1 P is the control signal generated by a control section.

[1 We can separate the control variables from the register transfer operation by specifying a Control
Function.

(1 Control function is a Boolean variable that is equal to 0 or 1.

1 control function is included in the statement as

P: R2—R1

(1 Control condition is terminated by a colon implies transfer operation be executed by the
hardware only if P=1.

1 Every statement written in a register transfer notation implies a hardware construction for
implementing the transfer.

(1 Figure 4-2 shows the block diagram that depicts the transfer from R1 to R2.

Figure 4.2 Transfer from R1 o R2 when p» 1.

Control P Load . e Clock
circuit —‘L—%—l———j

A B
[= |

(a] Block diagram

Clock

L.oad / L
Transfer occurs here ——1

(b] Timing diagram

[0 The noutputs of register R1 are connected to the n inputs of register R2.

[0 The letter n will be used to indicate any number of bits for the register. It will be replaced by an
actual number when the length of the register is known.

[Register R2 has a load input that is activated by the control variable P.

[0 Itis assumed that the control variable is synchronized with the same clock as the one applied to
the register.

[0 As shown in the timing diagram, P is activated in the control section by the rising edge
of a clock pulse at time t.

(1 The next positive transition of the clock at time t + 1 finds the load input active and the data inputs
of R2 are then loaded into the register in parallel.

) P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition
while P remains active.

[Even though the control condition such as P becomes active just after time t, the actual transfer
does not occur until the register is triggered by the next positive transition of the clock at time

Department of CSE Page 17

t+1.

(1 The basic symbols of the register transfer notation are listed in below table

Symbol

Description

Examples

Letters(and numerals)

Denotes a register

MAR, R2

Parentheses ()

Denotes a part of a register

R2(0-7), R2(L)

Arrow <--

Denotes transfer of information

R2 <--R1

Comma,

Separates two microoperations

R2 <--R1, R1<--R2

(1 A comma is used to separate two or more operations that are executed at the same time.

[0 The statement

T :R2—R1,R1+— R2

(exchange operation)

denotes an operation that exchanges the contents of two rgisters during one common clock pulse

provided that T=1.

Bus and Memory Transfers:

1 A more efficient scheme for transferring information between registers in a multiple-register
configuration is a Common Bus System.

O O

transfer.

O

Different ways of constructing a Common Bus System

v Using Multiplexers
v’ Using Tri-state Buffers

Common bus system is with multiplexers:

A common bus consists of a set of common lines, one for each bit of a register.
Control signals determine which register is selected by the bus during each particular register

(1 The multiplexers select the source register whose binary information is then placed

on the bus.

(1 The construction of a bus system for four registers is shown in below Figure.

Department of CSE

Page 18

£

- T

camiman

bas

{
= 4w : &1 —"“ 1% 1 %1
MUX 2 | MUX 2 | | MUX | MUX O
1 10 3 2 1 0| | 3 201 n §o 25 4 0
A . A
feif] R BEE
'!)-_ (-.' B8 .‘. D - ‘]. A Dy Co 8By Ay
{
o, Dy Iy ‘ C; O C,y 8. B 5 Ay Ay Ay
s B A
t 1 & A0 i b i il
] 2 | Q J 2] 0 ‘ 3 2 1 0 k) 2 1 o
Register) Register € Re pisier 0 Reogister A
(1 The bus consists of four 4 x 1 multiplexers each having four data inputs, O through 3, and two
selection inputs, S1 and So.
(1 For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled
A1
(1 The diagram shows that the bits in the same significant position in each register are connected to
the data inputs of one multiplexer to form one line of the bus.
(1 Thus MUX 0 multiplexes the four O bits of the registers, MUX 1 multiplexes the four 1 bits of
theregisters, and similarly for the other two bits.
(1 The two selection lines Si and So are connected to the selection inputs of all four multiplexers.
(1 The selection lines choose the four bits of one register and transfer them into the four-line
common bus.
(1 When S1So = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs
that form the bus.
(1 This causes the bus lines to receive the content of register A since the outputs of this register are
connected to the 0 data inputs of the multiplexers.
(1 Similarly, register B is selected if S1So = 01, and so on.
[1 Table 4-2 shows the register that is selected by the bus for each of the four possible binary value
of the selection lines.
St So Register selected
0 0 A
0 1 B
1 0 C
1 1 D
(1 In general a bus system has
v' multiplex “k” Registers
Department of CSE Page 19

each register of “n” bits
to produce “n-line bus”
no. of multiplexers required = n
v' size of each multiplexer =k x 1
(1 When the bus is includes in the statement, the register transfer is symbolized as follows:
BUS+ C, R1— BUS
(1 The content of register C is placed on the bus, and the content of the bus is loaded into register R1
by activating its load control input. If the bus is known to exist in the system, it may be convenient
just to show the direct transfer.

A NRNERN

R1—C
Three-State Bus Buffers:

[1 A bus system can be constructed with three-state gates instead of multiplexers.

(1 Athree-state gate is a digital circuit that exhibits three states.

[1 Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate.

(1 The third state is a high-impedance state.

1 The high-impedance state behaves like an open circuit, which means that the output is
disconnected and does not have logic significance.

Because of this feature, a large number of three-state gate outputs can be connected with wires to
form a common bus line without endangering loading effects.
The graphic symbol of a three-state buffer gate is shown in Fig. 4-4.

J

J

Figure 44 Graphic symbols for three-state buffer.

Nocal saput 2 N~ Output Y =Aif C=1

f j/ High-impedance if C=0
Control input C

It is distinguished from a normal buffer by having both a normal input and a control input.

The control input determines the output state. When the control input is equal to 1, the output is
enabled and the gate behaves like any conventional buffer, with the output equal to the normal
input.

1 When the control input is 0, the output is disabled and the gate goes to a high-impedance state,
regardless of the value in the normal input.

The construction of a bus system with three-state buffers is shown in Fig. 4

Ao _.‘—{T’:}_ T BSuan fwe Tow Bl ©
=

B ———— S

OO

|

Exninisle =~

Figure 4-5 Dus lime with rhroe sarebuaffern.

Department of CSE Page 20

(1 The outputs of four buffers are connected together to form a single bus line.

(1 The control inputs to the buffers determine which of the four normal inputs will communicate with
the bus line.

(1 No more than one buffer may be in the active state at any given time. The connected buffers must
be controlled so that only one three-state buffer has access to the bus line while all other buffers
are maintained in a high impedance state.

[1 One way to ensure that no more than one control input is active at any given time is to use a
decoder, as shown in the diagram.

1 When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a
high-impedance state because all four buffers are disabled.

(1 When the enable input is active, one of the three-state buffers will be active, depending on the
binary value in the select inputs of the decoder.

Memory Transfer:

(1 The transfer of information from a memory word to the outside environment is called a read
operation.

(1 The transfer of new information to be stored into the memory is called a write operation.

1 A memory word will be symbolized by the letter M.

[1 The particular memory word among the many available is selected by the memory address during
the transfer.

(1 Itis necessary to specify the address of M when writing memory transfer operations.

(1 This will be done by enclosing the address in square brackets following the letter M.

(1 Consider a memory unit that receives the address from a register, called the address register,
symbolized by AR.

[1 The data are transferred to another register, called the data register, symbolized by DR.

[1 The read operation can be stated as follows:

Read: DR<- M [AR]

(1 This causes a transfer of information into DR from the memory word M selected by the address in
AR.

(1 The write operation transfers the content of a data register to a memory word M selected by the
address. Assume that the input data are in register R1 and the address is in AR.

(1 The write operation can be stated as follows:

Write: M [AR] <- R1

Types of Micro-operations:

[I I O B

Reqister Transfer Micro-operations: Transfer binary information from one register to another.
Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in registers.
Logical Micro-operations: Perform bit manipulation operations on data stored in registers.
Shift Micro-operations: Perform shift operations on data stored in registers.

Register Transfer Micro-operation doesn’t change the information content when the binary
information moves from source register to destination register.

Department of CSE Page 21

(1 Other three types of micro-operations change the information change the information content

during the transfer.

Arithmetic Micro-operations:

(1 The basic arithmetic micro-operations are
Addition

Subtraction

Increment

Decrement

o Shift

o O O O

(1 The arithmetic Micro-operation defined by the statement below specifies the add micro-

operation.
R3 —R1+R2

1 It states that the contents of R1 are added to contents of R2 and sum is transferred to R3.
(1 To implement this statement hardware requires 3 registers and digital component that performs

addition

(1 Subtraction is most often implemented through complementation and addition.

J

R3+«—R1+R2+ 1
instead of minus operator, we can write as

l
0 R2isthe symbol for the 1°s complement of R2

(1 Adding 1 to 1’s complement produces 2’s complement
D

The subtract operation is specified by the following statement

Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2.

Binary Adder:

(1 Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called FULL ADDER

(1 Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is called

BINARY ADDER.

(1 Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary adder.

B, A 1- |
Aiﬁﬁ

—

S 5,

A,y
| e
 J <
& -
FA - FA

Figure 4-6 4-bit binary adder.

IT; | Ay

Ia

!

Su

(1 The augends bits of A and the addend bits of B are designated by subscript numbers from

right to left, with subscript 0 denoting the low-order bit.

(1 The carries are connected in a chain through the full-adders. The input carry to the
binary adder is Co and the output carry is C4. The S outputs of the full-adders generate

the required sum bits.
[An n-bit binary adder requires n full-adders.

Department of CSE Page 22

Binary Adder — Subtractor:

(1 The addition and subtraction operations can be combined into one common circuit by including an
exclusive-OR gate with each full-adder.

] A 4-bit adder-subtractor circuit is shown in Fig. 4-7.

f" - \ ’j ») . | i . | M | : { | t’
v | © | & ’Jg I

Y ‘ * y = .
l A l A ' - l A s r ri\- I..' v

| T

Fagoes 4.5 L BT siddey maalogy e o

<y
-

(1 The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the
circuit becomes a subtractor.

[1 Each exclusive-OR gate receives input M and one of the inputs of B

1 When M =0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0,
andthe circuit performs A plus B.

[0 WhenM =1, we have Bxor1=B"and Co = 1.

(1 The B inputs are all complemented and a 1 is added through the input carry.

[1 The circuit performs the operation A plus the 2's complement of B.

Binary Incrementer:

The increment microoperation adds one to a number in a register.
For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.
This can be accomplished by means of half-adders connected in cascade.

D
D
D
(1 The diagram of a 4-bit ‘combinational circuit incrementer is shown in Fig. 4-8.

Figure 4-8 <-bir binary incrermencer

(1 One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other
input is connected to the least significant bit of the number to be incremented.

(1 The output carry from one half-adder is connected to one of the inputs of the next-higher-order
half-adder.

[1 The circuit receives the four bits from Ag through As, adds one to it, and generates the
incremented output in Sp through Ss.

(1 The output carry Cs will be 1 only after incrementing binary 1111. This also causes outputs
Sothrough Sz to go to 0.

Department of CSE Page 23

(1 The circuit of Fig. 4-8 can be extended to an n -bit binary incrementer by extending the diagram to

include n half-adders.

(1 The least significant bit must have one input connected to logic-1. The other inputs receive the
number to be incremented or the carry from the previous stage.

Arithmetic Circuit:

(1 The basic component of an arithmetic circuit is the parallel adder.
1 By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic

operations.

(1 The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder circuits
thatconstitute the 4-bit adder and four multiplexers for choosing different operations.

(:m —’_’-—P‘_'—d—

1 X‘J (‘.O ‘i
Ag—— : |
15 FA Dy
8o l
0 4)(| Yo C.
s | [> : | MUX
2
3
X, G
4,
Sy FA —2D
S
0 4xl1 Y, G
5 D . | MUX ’
2
3 ——_ﬁ
A2 ,‘2 C"n
A .
So FA | [
. 0 4x1 Y. Cs
B D ; | MUX - ;
2
3 W
. X3 Cs |
3 |
|
So
B3 0 4x1 Yy C‘
l l > 0 1 MUX e
2 l
3 i (;mn
0 —<LD<>—
Department of CSE

Page 24

There are two 4-bit inputs A and B and a 4-bit output D.

The four inputs from A go directly to the X inputs of the binary adder.

Each of the four inputs from B are connected to the data inputs of the multiplexers.

The multiplexers data inputs also receive the complement of B.

The other two data inputs are connected to logic-0 and logic-1.

The four multiplexers are controlled by two selection inputs S1 and Se. The input carry Cin, goes to
the carry input of the FA in the least significant position. The other carries are connected from one
stage to the next.

(1 By controlling the value of Y with the two selection inputs S; and Sp and making Cin equal to 0 or
1,it is possible to generate the eight arithmetic microoperations listed in Table 44.

O OO oo o

TABLE 4-4 Arithmetic Circuit Function Table

—
Select
= Input Output
1 A G Y D=A+Y+ C, Microoperation
0 0 0 B D=A+B Add
;) 0 1 B D=A+ B+ 1 Add with carry
) 1 0 B D=A+ B Subtract with borrow
0 I 1 B D=A+ 8B + 1 Subtract
| 0 0 0 D= A Transfer A
| 0 | 0 D= A+ 1 Increment A
| I 0 1 D=A-1 Decrement A
| | | I D= A Transfer A

Addition:

1 When S:So= 00, the value of B is applied to the Y inputs of the adder.
v If Cir, =0, the output D =A+B.
v' If Cin=1, output D=A+B + 1.
(1 Both cases perform the add microoperation with or without adding the input carry.

Subtraction:

1 When S1Se = 01, the complement of B is applied to the Y inputs of the adder.
v' IfCin=1, then D = A+ B + 1. This produces A plus the 2's complement of B,

which isequivalent to a subtraction of A -B.
v" When Cin = 0 then D = A + B. This is equivalent to a subtract with borrow, that

is,A-B-1.

Increment:

1 When S1So = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y inputs.
The output becomes D = A + 0 + Cin. This gives D = Awhen Ciy=0and D = A + 1 when Cin = 1.

[In the first case we have a direct transfer from input A to output D.

[Inthe second case, the value of A is incremented by 1.

Page 25

Department of CSE

Decrement:

(1 When S1So= 11, all I's are inserted into the Y inputs of the adder to produce the decrement
operation D = A -1 when Ci, = 0.

(1 This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement of
binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F = A + 2's
complement of 1 = A— 1. When Ci, = 1, then D = A -1 + 1=A, which causes a direct transfer
frominput A to output D.

Logic Micro-operations:

(1 Logic microoperations specify binary operations for strings of bits stored in registers.

These operations consider each bit of the register separately and treat them as binary variables.

(1 For example, the exclusive-OR microoperation with the contents of two registers Rl and R2 is
symbolized by the statement

J

P: R1 « R1 & R2

[1 It specifies a logic microoperation to be executed on the individual bits of the registers provided
that the control variable P = 1.

List of Logic Microoperations:

71 There are 16 different logic operations that can be performed with two binary variables.
[1 They can be determined from all possible truth tables obtained with two binary variables as
shown in Table 4-5.

TABLE 4-5 Truth Tables for 16 Functions of Two Variables

X 2y Fo Fl Fg F:, F4 Fs ch F? FR F9 Fto Fu Ft: Fxs Fu F15
1 R LY | DA ¢ S) Y N 1 I IO I g | 1 1 1 1 1 1
A 65 < YIS 5 I < LA) S Y SR S | B . 0 1 1 1 1
i F e B3 B B3 F 8 0O 2R 1 0 0 1 1
I eE. 2D £ 0-% 8. B 1 0 1 0 1

(1 The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first
column of Table 4-6.

(1 The 16 logic microoperations are derived from these functions by replacing variable x by the
binary content of register A and variable y by the binary content of register B.

[The logic micro-operations listed in the second column represent a relationship between the
binary content of two registers A and B.

Department of CSE Page 26

TABLE 4.6 Sixteen Logic Microoperations

Boolean function Microoperation Name
=0 F<0 Clear
F=xy F<A/NB AND
F, = xy' F—ANANB
Fy=ix Fe<A Transfer A
Ey=x"y F<A A\B
Fs=y F<B Transfer B
Fe=xDy F<—A®B Exclusive-OR
Fo=x+y F<—A\/B OR
Fe=(x +y) F—A\/B NOR
Fo = (x@By) F—ADB Exclusive-NOR
Fio=y' F—B Complement B
Fuo=x+y' F—A\ B
Fi:=x' F<A Complement A
Fia=x"+y F<—A\/B
F14 = (X_Y)' F—A /\ B NAND
Fis=1 F<all I’s Set to all 1’s

Hardware Implementation:

(1 The hardware implementation of logic microoperations requires that logic gates be inserted for
each bit or pair of bits in the registers to perform the required logic function.

O

Although there are 16 logic microoperations, most computers use only four--AND, OR,

XOR(exclusive-OR), and complement from which all others can be derived.

gate that performs the required logic.

Figure 4-10 shows one stage of a circuit that generates the four basic logic microoperations.
It consists of four gates and a multiplexer. Each of the four logic operations is generated through a

The outputs of the gates are applied to the data inputs of the multiplexer. The two selection inputs

Sz and So choose one of the data inputs of the multiplexer and direct its value to the output.

i,

[

D) >
>0

Figure 4-10 Cne srage of loric cirmlr
] —
4x1
MUX
pe
S So Outpar Operation
s 0 0| E=ar8 | AND
0 1 E=AvB | OR
1 Q E=A3A]| XOR
1 ! E=A Complemen)
|
{6} Funcuon tble
) Logic diagram

Department of CSE

Page 27

Some Applications:

[J Logic micro-operations are very useful for manipulating individual bits or a portion of a word stored in a
register.
[1 They can be used to change bit values, delete a group of bits or insert new bits values into a register.
[1 The following example shows how the bits of one register (designated by A) are manipulated by logic
microoperations as a function of the bits of another register (designated by B).
[J Selective set
7 The selective-set operation sets to 1 the bits in register A where there are corresponding I's
in register B. It does not affect bit positions that have 0's in B. The following numerical
example clarifies this operation:

1010 A before
1100 B (logic operand)
1110 A after

The OR microoperation can be used to selectively set bits of a register.

[] Selective complement
v’ The selective-complement operation complements bits in A where there are corresponding
1's in B. It does not affect bit positions that have 0's in B. For example:

1010 A before
1100 B (logic operand)
0110 A after

v The exclusive-OR microoperation can be used to selectively complement bits of a register.
[Selective clear

v' The selective-clear operation clears to 0 the bits in A only where there are
corresponding I's in B. For example:

1010 A before
1100 B (logic operand)
0010 A after

A< ANTB

v" The corresponding logic microoperation is
[Mask
v" The mask operation is similar to the selective-clear operation except that the bits of A are cleared
only where there are corresponding O's in B . The mask operation is an AND micro operation as
seen from the following numerical example:

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

0 Insert
v' The insert operation inserts a new value into a group of bits. This is done by first masking the bits

and then ORing them with the required value.

Department of CSE Page 28

v For example, suppose that an A register contains eight bits, 0110 1010. To replace the four leftmost
bits by the value 1001 we first mask the four unwanted bits:

0110 1010
0000 1111
0000 1010

and then insert the new value:

0000 1010
1001 0000
1001 1010

A before
B (mask)
A after masking

A before
B (insert)
A after insertion

v The mask operation is an AND microoperation and the insert operation is an OR

microoperation.

0 Clear

v" The clear operation compares the words in A and B and produces an all 0's result if the two
numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown

by the following example

1010 A
1010 B

0000 A<—ADB

Shift Microoperations:

OO o0ooo.d

Shift microoperations are used for serial transfer of data.

The contents of a register can be shifted to the left or the right.

During a shift-left operation the serial input transfers a bit into the rightmost position.
During a shift-right operation the serial input transfers a bit into the leftmost position.
There are three types of shifts: logical, circular, and arithmetic.

The symbolic notation for the shift microoperations is shown in Table 4-7.
TABLE 4-7 Shift Microoperations

Symbolic designation Description

R<«shl R Shift-left register R

R «shr R Shift-right register R

R«cil R Circular shift-left register R
R«cirR Circular shift-right register R
R<«ashl R Arithmetic shift-left R

R «<—ashr R Arithmetic shift-right R

[Logical Shift:

o A logical shift is one that transfers 0 through the serial input.
o The symbols shl and shr for logical shift-left and shift-right microoperations.

Department of CSE

Page 29

o The microoperations that specify a 1-bit shift to the left of the content of register R and a
1-bit shift to the right of the content of register R shown in table 4.7.

o The bit transferred to the end position through the serial input is assumed to be 0 duringa
logical shift.

(1 Circular Shift:
o The circular shift (also known as a rotate operation) circulates the bits of the register
around the two ends without loss of information.
o This is accomplished by connecting the serial output of the shift register to its serial input.
o We will use the symbols cil and cir for the circular shift left and right, respectively.
(1 Arithmetic Shift:
o An arithmetic shift is a microoperation that shifts a signed binary number to the left or
right.
o An arithmetic shift-left multiplies a signed binary number by 2.
o An arithmetic shift-right divides the number by 2.
o Arithmetic shifts must leave the sign bit unchanged because the sign of the number
remains the same when it is multiplied or divided by 2.

Rn 1 | Rn-2 | R, Ko

Figure 4-11 Arithmetic shift right,

Hardware Implementation:

A combinational circuit shifter can be constructed with multiplexers as shown in Fig. 4-12.

The 4-bit shifter has four data inputs, Ao through As, and four data outputs, Ho through Ha.

There are two serial inputs, one for shift left (1) and the other for shift right (Ir).

When the selection input S=0 the input data are shifted right (down in the diagram).

When S = 1, the input data are shifted left (up in the diagram).

The function table in Fig. 4-12 shows which input goes to each output after the shift.

A shifter with n data inputs and outputs requires n multiplexers.

The two serial inputs can be controlled by another multiplexer to provide the three possible typesof
shifts.

N R B A O

Department of CSE Page 30

Select

: 0 for shift right (down)
3 Serial 1 for shift left {(up)
input (7g)
S
o MUX |—Hg
1
Ko
S -
Al | Function table
o MUX |—H,
A 1 Select Qutput
S Hy H, H3 H;
As
0 /;; A;; A 1 A:
S
0 hr‘UX _—113 1 A] _4: A_.! IL
1
S
o MUX —H>
1
Serial

nput (fr)

Figure 4-12 4-bit combinational circuit shifter.

Arithmetic Logic Shift Unit:

U

Instead of having individual registers performing the microoperations directly, computer systems
employ a number of storage registers connected to a common operational unit called an arithmetic
logic unit, abbreviated ALU.

The ALU is a combinational circuit so that the entire register transfer operation from the

source registers through the ALU and into the destination register can be performed during one
clock pulse period.

The shift microoperations are often performed in a separate unit, but sometimes the shift unit is
made part of the overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one
ALU with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig.
4-13.

Particular microoperation is selected with inputs S1 and So. A 4 x 1 multiplexer at the output
chooses between an arithmetic output in D; and a logic output in Ei.

The data in the multiplexer are selected with inputs Sz and S,. The other two data inputs to the
multiplexer receive inputs Ai.1 for the shift-right operation and Ai.1 for the shift-left operation.
The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic
operations, and two shift operations.

Each operation is selected with the five variables Ss, Sz, S1, So and Cin.

The input carry Cin is used for selecting an arithmetic operation only.

Department of CSE Page 31

Figure 4-13 One stage of arithmeric logic shife unir.

5y
53
Sy
= M
C,
D:
E,
) —
An‘-l W
ALy shi

(1 Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic operations and are
selected with S3S; = 00.

The next four are logic and are selected with S3S; = 01.

The input carry has no effect during the logic operations and is marked with don't-care x’s.
The last two operations are shift operations and are selected with S3S;= 10 and 11.

The other three selection inputs have no effect on the shift.

OO oo

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

8 & & S G Operation Function

0 0 0 0 0 F=A Transfer A

0 0 0 0 1 F=A+1 Increment A

0 0 0 1 0 F=A+RB Addition

0 0 0 1 1 F=A+B+1 Add with carry

0 0) Y 0 F=A+F Subtract with borrow
0 0 1 0 1 F=A+B +1 Subtraction

0 0 1 1 0 F=A-1 Decrement A

0 0 1 1 1 F=A Transfer A

0 1 0 0 X F=ANB AND

R R X F=AVYEB OR

0 1 1 0 X F=A®B XOR

RN | 1 1 X F=A& Complement A

) SN X X X F=shrA Shift right A into F
1 1 X X b4 F =shl A Shift left A into F

Department of CSE Page 32

UNIT 1—-BASIC COMPUTER ORGANIZATION AND DESIGN

CONTENTS:

1 Instruction codes

(1 Computer Registers Computer instructions
1 Timing and Control

(1 Instruction cycle

(1 Memory Reference Instructions

(1 Input — Output and Interrupt.

INSTRUCTION DE
An instruction code is a group of bits that instruct the computer to perform a specific operation.

Operation Code

The operation code of an instruction is a group of bits that define such operations as add,
subtract, multiply, shift, and complement. The number of bits required for the operation code
of an instruction depends on the total number of operati%ns available in the computer. The

operation code must consist of at least n bits for a given 2 (or less) distinct operations.

Accumulator (AC)

Computers that have a single-processor register usually assign to it the name accumulator
(AC) accumulator and label it AC. The operation is performed with the memory operand and
the content of AC.

Stored Program Organization

e The simplest way to organize a computer is to have one processor register
and aninstruction code format with two parts.

e The first part specifies the operation to be performed and the second
specifies anaddress.

e The memory address tells the control where to find an operand in memory.

e This operand is read from memory and used as the data to be operated on together
withthedata stored in the processor register.

e The following figure 2.1 shows this type of organization.

Department of CSE Page 33

Memory

409 x 16
s RN P Instructions
Opcode Address (Program)
Instruction format
15 0 Operands
data
Binary Operand {)

Processor register
(AC)

Figure 2.1: Stored Program Organization

e Instructions are stored in one section of memory and data in another.

e For a memory unit with 4096 words, we need 12 bits to specify an address since 212 =
4096.

e If we store each instruction code in one 16-bit memory word, we have available four bits
for operation code (abbreviated opcode) to specify one out of 16 possible operations, and
12 bits to specify the address of an operand.

e The control reads a 16-bit instruction from the program portion of memory.

e It uses the 12-bit address part of the instruction to read a 16-bit operand from the data
portion of memory.

e It then executes the operation specified by the operation code.

e Computers that have a single-processor register usually assign to it the name
accumulator and label it AC.

e Ifanoperation in an instruction code does not need an operand from memory, the restof
the bits in the instruction can be used for other purposes.

e For example, operations such as clear AC, complement AC, and increment AC operate on
data stored in the AC register. They do not need an operand from memory. For these types
of operations, the second part of the instruction code (bits 0 through 11) is not needed for
specifying a memory address and can be used to specify other operations for the
computer.

Direct and Indirect addressing of basic computer.
e The second part of an instruction format specifies the address of an operand, the
instruction is said to have a direct address.

e In Indirect address, the bits in the second part of the instruction designate an address ofa
memory word in which the address of the operand is found.

e One bit of the instruction code can be used to distinguish between a direct and an
indirect address.

e |t consists of a 3-bit operation code, a 12-bit address, and an indirect address mode bit
designated by I.

e The mode bit is O for a direct address and 1 for an indirect address.

Department of CSE Page 34

A direct address instruction is shown in Figure 2.2. It is placed in address 22 in memory. The
I bit is 0, so the instruction is recognized as a direct address instruction.

The opcode specifies an ADD instruction, and the address part is the binary equivalent of
457.

The control finds the operand in memory at address 457 and adds it to the content of
AC.

The instruction in address 35 shown in Figure 2.3 has a mode bit | = 1, recognized as an
indirect address instruction.

The address part is the binary equivalent of 300.

The control goes to address 300 to find the address of the operand. The address of the

operand in this case is 1350. The operand found in address 1350 is then added to the
content of AC.

The indirect address instruction needs two references to memory to fetch an operand.
1. The first reference is needed to read the address of the operand
2. Second reference is for the operand itself.

The memory word that holds the address of the operand in an indirect address
instruction is used as a pointer to an array of data.

15 14 12 11 0
I | Opcode | Address
Memory Memory
5, | 0 ADD 457 35| 1| ADD 300
300 1350
457 Operand
1350 Operand
_— o
v ~
\\\——/ ‘___-_/
/jr
| gio ¥ £
|
\1‘/ \I/
I AC AC
Figure 2.2: Direct Address Figure 2.3: Indirect Address

Department of CSE

Page 35

Direct Address

Indirect Address

When the second part of an instruction code specifies
the addressof an operand, the instruction is said to have
a direct address.

When the second part of an instruction code specifies
the address of a memory word in which the address
of the operand,the instruction is said to have a direct
address.

For instance the instruction MOV R0 00H. RO, when
converted to machinelanguage is the physical address
of register RO. The instruction moves 0 to RO

For instance the instruction MOV @RO0 00H,when
converted to machine language, @R0becomes
whatever is stored in RO, and thatis the address used
to move 0 to. It can be whatever is stored in RO.

Registers of basic computer

[]
after it is read from memory.

memory address.

. 11 0
: PC |
: 1 0
: I AR |
T 0
I IR |
15 0
I TR I
7 0 7 0
| OUTR | | INPR |

It is necessary to provide a register in the control unit for storing the instruction code
The computer needs processor registers for manipulating data and a register for holdinga

These requirements dictate the register configuration shown in Figure 2.4.

: Memory
: 4096 x 16
S e Ann AR AR AR AR SRR AR CPU
15 0
I DR |
15 0 i
| AC :

ceee

Figure 2.4: Basic Computer Register and Memory

The data register (DR) holds the operand read from memory.

The accumulator (AC) register is a general purpose processing register.

The instruction read from memory is placed in the instruction register (IR).

The temporary register (TR) is used for holding temporary data during the processing.

The memory address register (AR) has 12 bits.

The program counter (PC) also has 12 bits and it holds the address of the next instruction

to be read from memory after the current instruction is executed.

the program.

Instruction words are read and executed in sequence unless a branch instruction is
encountered. A branch instruction calls for a transfer to a nonconsecutive

instruction in

Two registers are used for input and output. The input register (INPR) receives an 8-bit

character from an input device. The output register (OUTR) holds an 8-bit character for an

output device.

Department of CSE

Page 36

Registe | Bits Register Name Function

r

Symbol

DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register | Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register | Holds temporary data
INPR 8 Input register Holds input character
OUTR (8 Output register Holds output character

Table 2.1: List of Registers for Basic Computer

Common Bus System for basic computer register.
What is the requirement of common bus System?

Department of CSE

The basic computer has eight registers, a memory unit and a control unit.

Paths must be provided to transfer information from one register to another and
between memory and register.

The number of wires will be excessive if connections are between the outputs of each
register and the inputs of the other registers. An efficient scheme for transferring
information in a system with many register is to use a common bus.

The connection of the registers and memory of the basic computer to a common bus
system is shown in figure 2.5.

The outputs of seven registers and memory are connected to the common bus. The
specific output that is selected for the bus lines at any given time is determined from the
binary value of the selection variables S2, S1, and SO.

The number along each output shows the decimal equivalent of the required binary
selection.

The particular register whose LD (load) input is enabled receives the data from the bus
during the next clock pulse transition. The memory receives the contents of the bus when
its write input is activated. The memory places its 16-bit output onto the bus whenthe read
input is activated and S2 S1S0=11 1.

Four registers, DR, AC, IR, and TR have 16 bits each.

Two registers, AR and PC, have 12 bits each since they hold a memory address.

When the contents of AR or PC are applied to the 16-bit common bus, the four most

significant bits are set to 0’s. When AR and PC receive information from the bus, only the
12 least significant bits are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each and communicate
with the eight least significant bits in the bus. INPR is connected to provide information
to the bus but OUTR can only receive information from the bus.

Page 37

T o

Memory unit 7
*1 “09%6% 16 |e
1 T Address
Write Read
| | | 1
LD INR CLR
dz
LD INR CLR
P | 1
1 R 3
7 P2 ey oS
LD INR CLR

ALU

LD INR CLR

Tl

1 1 1
LD INR CLR

L
W 10-DIt COMENON DUS -

Figure 2.5: Basic computer registers connected to a common bus

Clock

e Five registers have three control inputs: LD (load), INR (increment), and CLR (clear).
Tworegisters have only a LD input.

e AR must always be used to specify a memory address; therefore memory address is
connected to AR.

e The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets
ofinputs.
1. Set of 16-bit inputs come from the outputs of AC.
2. Set of 16-bits come from the data register DR.
3. Set of 8-bit inputs come from the input register INPR.

e The result of an addition is transferred to AC and the end carry-out of the addition is
transferred to flip-flop E (extended AC bit).

e The clock transition at the end of the cycle transfers the content of the bus into the
designated destination register and the output of the adder and logic circuit into AC.

Instruction Format with its types.
e The basic computer has three instruction code formats, as shown in figure 2.6.

Department of CSE

Page 38

15 14 12 11 0
I Opcode Address (Opcode = 000 through 110)

(a) Memory - reference instruction

15 12 11 0

g A E) Register operation (Opcode =111, 1=0)
(b) Register — reference instruction

15 12 11 0

[S B 1/0 operation (Opcode =111, [=1)

(c) Input ~ output instruction

Figure 2.6: Basic computer instruction format

Each format has 16 bits.

The operation code (opcode) part of the instruction contains three bits and the meaningof
the remaining 13 bits depends on the operation code encountered.

A memory-reference instruction uses 12 bits to specify an address and one bit to
specify the addressing mode 1. | is equal to O for direct address and to 1 for indirect
address.

The register reference instructions are recognized by the operation code 111 witha 0 in
the leftmost bit (bit 15) of the instruction. A register-reference instruction specifies an
operation on or a test of the AC register. An operand from memory is not needed;
therefore, the other 12 bits are used to specify the operation or test to be executed.

An input-output instruction does not need a reference to memory and is recognized by
the operation code 111 with a 1 in the leftmost bit of the instruction. The remaining 12
bits are used to specify the type of input-output operation or test performed.

Control Unit with timing diagram.

The block diagram of the control unit is shown in figure 2.7.

Components of Control unit are

1. Two decoders

2. Asequence counter

3. Control logic gates

An instruction read from memory is placed in the instruction register (IR). In control unit

the IR is divided into three parts: | bit, the operation code (12-14)bit, and bits 0 through
11.

The operation code in bits 12 through 14 are decoded with a 3 X 8 decoder.

Department of CSE

Page 39

Instruction reimor (IR)

[1s] 14 13 12} 11-0 | Other inputs
00000000000 L AR R R R LR B AL AR R R R R R R R R) AR A R R R R
~ J» v
Ix8
decoder
76543 210
12812 Do
[!J Combinational .
Dy Control |se——a—q Control
logic signals
115
[_In_.
15§ 14210
4x16
decoder
4 4 {I s
4-bit W INCTrEement (INR)
sequence |e——— Clear (CLR)
counter
(SC) *—— Clock

oo

Figure: Control unit of basic computer

e Bit-15 of the instruction is transferred to a flip-flop designated by the symbol I.

e The eight outputs of the decoder are designated by the symbols DO through D7. Bits 0O
through 11 are applied to the control logic gates. The 4-bit sequence counter can countin
binary from 0 through 15.The outputs of counter are decoded into 16 timing signals TO
through T15.

e The sequence counter SC can be incremented or cleared synchronously. Most of the time, the
counter is incremented to provide the sequence of timing signals out of 4 X 16 decoder. Once
in awhile, the counter is cleared to 0, causing the next timing signal to be TO.

e As an example, consider the case where SC is incremented to provide timing signals TO, T1,
T2, T3 and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active. This
is expressed symbolically by the statement

D3T4: SC 0
Timing Diagram:

e The timing diagram figure2.8 shows the time relationship of the control signals.

e The sequence counter SC responds to the positive transition of the clock.

e Initially, the CLR input of SC is active.

e The first positive transition of the clock clears SC to 0, which in turn activates the timingTO
out of the decoder. TO is active during one clock cycle. The positive clock transition labeled
TO in the diagram will trigger only those registers whose control inputs areconnected to timing signal
TO.

e SC is incremented with every positive clock transition, unless its CLR input is active.

e This procedures the sequence of timing signals TO, T1, T2, T3 and T4, and so on. If SCis
notcleared, the timing signals will continue with T5, T6, up to T15 and back to TO.

|Department of CSE Page 40

T0 T1 T2 T3 T4 T0

Clock 1 l
A 4 A A JL » A
TO y \ / '\
1 / \'l
T 1
: N\
T

w
>

~ =
—

w —

A /)

CLR S

Figure: Example of control timing signals

e The last three waveforms shows how SC is cleared when D3T4 = 1. Output D3 from the
operation decoder becomes active at the end of timing signal T2. When timing signal T4

becomes active, the output of the AND gate that implements the control function D3T4
becomes active.

e This signal is applied to the CLR input of SC. On the next positive clock transition the
counter is cleared to 0. This causes the timing signal TO to become active instead of T5 that
would have been active if SC were incremented instead of cleared.

Instruction cycle

e A program residing in the memory unit of the computer consists of a sequence of
instructions. In the basic computer each instruction cycle consists of the following phases:
1. Fetchan instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.

o After step 4, the control goes back to step 1 to fetch, decode and execute the nex
instruction.

|Department of CSE Page 41

e This process continues unless a HALT instruction is encountered.

Start

SCe«0
‘ Te
I AR & PC]

Ty
| IR &= M {AR], PC += PC + | J

LF}

Decode operation code in /R (12— 14)
AR —IR(0-11). 1 IR (15)

(Register or LO) =1 /\ =0 (Memory-reference)

K7
(L0) -IJKHJ (register) (indirect) = *ﬂ) (direct)
! O

T, T! Ty T.‘
input-output registes-reference
instruction instruction
SC+0 SCe«0
Execute
memory-reference
instruction
SC 0

Figure 2.9: Flowchart for instruction cycle (initial configuration)

e The flowchart presents an initial configuration for the instruction cycle and shows how the
control determines the instruction type after the decoding.

e |If D7 = 1, the instruction must be register-reference or input-output type. If D7 = 0, the
operation code must be one of the other seven values 110, specifying a memory- reference
instruction. Control then inspects the value of the first bit of the instruction, which now
available in flip-flop I.

e IfD7=0and | =1, we have a memory-reference instruction with an indirect address. It is
then necessary to read the effective address from memory.

e The three instruction types are subdivided into four separate paths. The selected ration is
activated with the clock transition associated with fiming signal T3.This canbe symbolized as follows:

D’71T3: AR MIJAR]
D’7 I’ T3: Nothing
D7 I’ T3: Execute a register-reference instruction
D7 | T3: Execute an input-output instruction
e When a memory-reference instruction with I = 0 is encountered, it is not necessary to do
anything since the effective address is already in AR.
e However, the sequence counter SC must be incremented when D°7 | T3 = 1, so that the
execution of the memory-reference instruction can be continued with timing variable T4.

e A rregister-reference or input-output instruction can be executed with the click associated with
timing signal T3. After the instruction is executed, SC is cleared to 0 and control returns to
the fetch phase with TO =1. SC is either incremented or cleared to 0 with every positive clock
transition.

|Department of CSE Page 42

Register reference instruction.
e When the register-reference instruction is decoded, D7 bit is set to 1.
e Each control function needs the Boolean relation D7 I' T3
15 12 11 0
10111 |Register Operation

There are 12 register-reference instructions listed below:

r: SC« 0 Clear SC
CLA |[rBu: |AC« O Clear AC
CLE |rBw: [E« O Clear E
CMA | rBe: AC « AC’ Complement AC
CME | rBs: E« FE Complement E
CIR rBr: AC « shr AC, AC(15) « E,E « Circular Right
AC(0)
CIL rBe: AC « shlAC,AC(0) « E,E« Circular Left
AC(15)
INC IBs: AC«+ AC+1 Increment AC
SPA | rBa: if (AC(15) = 0) then (PC «~ PC+1) Skip if positive
SNA | rBa: if (AC(15) = 1) then (PC «~ PC+1 Skip if negative
SZA | rBz: if (AC =0) then (PC «~ PC+1) Skip if AC is zero
SZE rBi: if (E = 0) then (PC «~ PC+1) Skip if E is zero
HLT | rBo: S« 0 (S is astart-stop flip-flop) Halt computer

e These 12 bits are available in IR (0-11). They were also transferred to AR during time T2.

e These instructions are executed at timing cycle T3.

e The first seven register-reference instructions perform clear, complement, circular shift,and
increment microoperations on the AC or E registers.

e The next four instructions cause a skip of the next instruction in sequence when condition i
satisfied. The skipping of the instruction is achieved by incrementing PC.

e The condition control statements must be recognized as part of the control conditions. The AC
is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of
AC is zero (AC = 0) if all the flip-flops of the register are zero.

e The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from
counting. To restore the operation of the computer, the start-stop flip-flop must be set
manually.

Memory reference instructions
e \When the memory-reference instruction is decoded, D7 bit is set to 0.

15 14 12 11 0
[1 [000~110 | Address |

e The following table lists seven memory-reference instructions.

Symbol [Operatio | Symbolic Description
nDecoder

AND Do AC« AC + M[AR]

ADD D1 AC « AC + M[AR], E « Cout

LDA D2 AC« M[AR]

|Department of CSE Page 43

STA | Ds M[AR] < AC

BUN | Ds PC <« AR

BSA |Ds M[AR] < PC,PC« AR+1

1SZ Do M[AR] <~ M[AR] + 1, if M[AR] + 1 = 0 then PC «
PC+1

e The effective address of the instruction is in the address register AR and was placed
there during timing signal T2 when | = 0, or during timing signal T3 when | = 1.

e The execution of the memory-reference instructions starts with timing signal T4.

AND to AC

This is an instruction that performs the AND logic operation on pairs of bits in AC and the
memory word specified by the effective address. The result of the operation is transferred to
AC.

DOT4: DR M[AR]

DOT5: AC«+— AC« DR, SC 0o

ADD to AC

This instruction adds the content of the memory word specified by the effective address tothe
value of AC. The sum is transferred into AC and the output carry Cout is transferred tothe E
(extended accumulator) flip-flop.

D1T4: DR « M[AR]

D1T5: AC« AC + DR, E« Caut, SC B

DA: Load to AC
This instruction transfers the memory word specified by the effective address to AC.
D2T4: DR« M|AR]
D2T5: AC« DR,SC [0
STA: Store AC
This instruction stores the content of AC into the memory word specified by the effective
address.
D3T4: M[AR] « BC,SC« 0
BUN: Branch Unconditionally
This instruction transfers the program to instruction specified by the effective address. The
BUN instruction allows the programmer to specify an instruction out of sequence and the
program branches (or jumps) unconditionally.
DA4T4: PC+ AR,SC+« 0
BSA: Branch and Save Return Address
This instruction is useful for branching to a portion of the program called a subroutine or
procedure. When executed, the BSA instruction stores the address of the next instruction in

sequence (which is available in PC) into a memory location specified by the effective
address.

M[AR] PC,PC AR + 1 M[135]
21,PC 135+ 1=136

|Department of CSE Page 44

Memory, PC, AR attime T4 Memory, PC after execution

20 |0 BSA 136 20 |0 BSA 1356
PC=21 | Nextinstruction 21 | Nextinstruction
AR= 135 135 21
136 Subroutine PC=136 Subroutine
\ 4 l
1 BUN 135 1 BUN 135

Figure2.10: Example of BSA instruction execution

It is not possible to perform the operation of the BSA instruction in one clock cycle when we
use the bus system of the basic computer. To use the memory and the bus properly, the BSA
instruction must be executed with a sequence of two microoperations:
D5T4: M[AR] PC, AR AR
+1D5T5: PC AR,SC 0L
ISZ: Increment and Skip if Zero

These instruction increments the word specified by the effective address, and if the
incremented value is equal to 0, PC is incremented by 1. Since it is not possible to

increment a word inside the memory, it is necessary to read the word into
DR, incrementDR, and store the word back into memory.

D6T

4. DR L M[AR]D6TS: DR DR + 1
D6T4: M[AR] U DR, if (DR = 0) then (PC [PC + 1),
SCLO

Control Flowchart

Memory-reference instruction

AND ADD LDA STA
DnTa v D4 v Dolg v Dalg4
| DR « M[AR) | I DR ¢« M[AR] [[DR « M[AR] M[gg] - 6"‘0
v DaTs v DqT5 v D575
AC «— ACADR AC« AC+DR AC < DR
SC«0 E « Cout SC<« 0
SC«0
BUN BSA ISz
v D4T4 v Dt:,T4 v DsT A
PC ¢« AR MIAR] « PC [DR « M[AR]
SC«0 AR ¢ AR + 1
v DsTs v DgTs
PC « AR [DR(—DR+1—|
SC <0 L
ol
MIAR] « DR
If (DR = 0}
then (PC «— PC + 1)
SC« 0

Figure 2.11: Flowchart for memory-reference instructions

|Department of CSE Page 45

Input-output configuration of basic computer

e A computer can serve no useful purpose unless it communicates with the
external environment.

e To exhibit the most basic requirements for input and output communication, we will
use a terminal unit with a keyboard and printer.

Serial Computer
Input-output communication R
terminal i g registers and
flip-flops
Receiver
Printer |[@———| oo face |[+——] OUTR | [Fo |
| AC |
r Y
Transmitter
Keyboard —®| interface 'l INPR | [Fat |

— Serial Communications Path

= Parallel Communications Path
Figure: Input-output configuration

e The terminal sends and receives serial information and each quantity of
information haseight bits of an alphanumeric code.

e The serial information from the keyboard is shifted into the input register
INPR.
e The serial information for the printer is stored in the output register OUTR.

e These two registers communicate with a communication interface
serially and with theAC in parallel.

e The transmitter interface receives serial information from the keyboard

and transmits it to INPR. The receiver interface receives information from
OUTR and sends it to the printer serially.

e The 1-bit input flag FGI is a control flip-flop. It is set to 1 when new
information is available in the input device and is cleared to 0 when the
information is accepted by the computer.

e The flag is needed to synchronize the timing rate difference between
the input deviceand the computer.

e The process of information transfer is as follows:

The process of input information transfer:

e Initially, the input flag FGI is cleared to 0. When a key is struck in the
keyboard, an 8-bit alphanumeric code is shifted into INPR and the input
flag FGI is set to 1.

e As long as the flag is set, the information in INPR cannot be changed by
striking another key. The computer checks the flag bit; if it is 1, the
information from INPR is transferred in parallel into AC and FGI is
cleared to 0.

e Once the flag is cleared, new information can be shifted into INPR by
striking anotherkey.

The process of outputting information:

e The output register OUTR works similarly but the direction of
information flow isreversed.

¢ Initially, the output flag FGO is set to 1. The computer checks the flag bit;

|Department of CSE Page 46

if it is 1, the information from AC is transferred in parallel to OUTR and
FGO is cleared to 0. The output device accepts the coded information,
prints the corresponding character, and when the operation is completed, it
sets FGO to 1.

e The computer does not load a new character into OUTR when FGO is 0
because this condition indicates that the output device is in theprocess of printing
the character.

Input-Output instructions

e Input and output instructions are needed for transferring information to
and from AC register, for checking the flag bits, and for controlling
theinterrupt facility.

e Input-output instructions have an operation code 1111 and are recognized
by the control when D7 =1 and | = 1.

e The remaining bits of the instruction specify the particular operation.

e The control functions and microoperations for the input-output
instructions are listed below.

INP AC(0-7) U INPR, FGI J 0 Input char. to AC
ouT OUTR [J AC(0-7),FGO J 0 Output char. from AC
SKI if(FGI = 1) then (PC [PC + 1) Skip on input flag
SKO if(FGO = 1) then (PC [J PC + 1) Skip on output flag
ION IEN 1 Interrupt enable on
IOF IENOCO Interrupt enable off

Table 2.2: Input Output Instructions

e The INP instruction transfers the input information from INPR into the
eight low-order bits of AC and also clears the input flag to 0.

e The OUT instruction transfers the eight least significant bits of AC
into the output register OUTR and clears the output flag to 0.

e The next two instructions in Table 2.2 check the status of the flags and
cause a skip of the next instruction if the flag is 1.

e The instruction that is skipped will normally be a branch instruction to
return and check the flag again.

e The branch instruction is not skipped if the flag is 0. Ifthe flag is 1, the
branch instruction is skipped and an input or output instruction is
executed.

e The last two instructions set and clear an interrupt enable flip-flop IEN.
The purpose of IEN is explained in conjunction with the interrupt
operation.

Interrupt Cycle
The way that the interrupt is handled by the computer can be explained by means of the
flowchart shown in figure 2.13.

e Aninterrupt flip-flop R is included in the computer.
e When R =0, the computer goes through an instruction cycle.
e During the execute phase of the instruction cycle IEN is checked by thecontrol.

e IfitisO, it indicates that the programmer does not want to use the
interrupt, so control continues with the next instruction cycle.

e IfIEN is 1, control checks the flag bits.

o If both flags are 0, it indicates that neither the input nor the output
registers are ready for transfer of information.

¢ Inthis case, control continues with the next instruction cycle. If either

|Department of CSE Page 47

flag is set to 1while IEN =1, flip-flop R is set to 1.

e At the end of the execute phase, control checks the value of R, and if it
is equal to 1, it goes to an interrupt cycle instead of an instruction

cycle.

Instruction cycle =())F!\:1 Interrupt cycle

! e o !

Fetch and decode Store rcturn'addrcss
instructions ':1'&”'81‘0;8
f <
Execute)EN\ . 1
TEChs Branch to location 1

PC « 1

IEN « 0

R« 0

v
Figure 2.13: Flowchart for interrupt cycle

Interrupt Cycle

e The interrupt cycle is a hardware implementation of a branch and save
return addressoperation.

e The return address available in PC is stored in a specific location where it
can be found later when the program returns to the instruction at which it
was interrupted. This location may be a processor register, a memory
stack, or a specific memory location.

e Here we choose the memory location at address 0 as the place for storing the
return address.

e Control then inserts address 1 into PC and clears IEN and R so that no

more interruptionscan occur until the interrupt request from the flag has
been serviced.

e Anexample that shows what happens during the interrupt cycle is shown in

Figure 2.14:
Memory
Before interrupt After interrupt cycle
0 0 256
1 |0 BUN 1120 PC=1 0 BUN 1120
Main Main
255 Program 255 Program
256
1120 1120
1/0 /0
Program Program
1 BUN 0 1 BUN 0

Figure 2.14: Demonstration of the interrupt cycle

|Department of CSE Page 48

Department of CSE

Suppose that an interrupt occurs and R = 1, while the control is
executing theinstruction at address 255. At this time, the return address
256 is in PC.

The programmer has previously placed an input-output service
program in memory starting from address 1120 and a BUN 1120
instruction at address 1.

The content of PC (256) is stored in memory location 0, PC is set to 1,
and R iscleared to0.

At the beginning of the next instruction cycle, the instruction that is read
from memory is in address 1 since this is the content of PC. The branch
instruction at address 1 causes the program to transfer to the input-output
service program at address 1120.

This program checks the flags, determines which flag is set, and then
transfers the required input or output information. Once this is done, the
instruction IONis executed to set IEN to 1 (to enable further interrupts),
and the program returnsto the location where it was interrupted.

The instruction that returns the computer to the original place in the main
program is a branch indirect instruction with an address part of 0. This
instruction is placed at the end of the 1/O service program.

The execution of the indirect BUN instruction results in placing into PC
the return address from location 0.

Register transfer statements for the interrupt cycle

The flip-flop is set to 1 if IEN = 1 and either FGI or FGO are equal to
1. This can happen with any clock transition except when timing
signalsTO, T1 or T2 are active.

The condition for setting flip-flop R= 1 can be expressed
with thefollowing register transfer statement:

TO M1 T2 (IEN) (FGI + FGO)IRL

The symbol + between FGI and FGO in the control
functiondesignates a logic OR operation. This is AND
withdEN and TO T1 T2.

The fetch and decode phases of the instruction cycle must be
modifiedand Replace TO,T1, T2 with RTO, RT1, RT2

Therefore the interrupt

cycle statements are L

'RTO: AR 0,TR PC
RT1: M[AR] TR,PC 0

RT2: PC PC+1,IEN OMR 0,8C O

During the first timing signal AR is cleared to 0, and the content
of PCis transferred tothe temporary register TR.

With the second timing signal, the return address is stored in
memory atlocation 0 andPC is cleared to 0.

The third timing signal increments PC to 1, clears IEN and
R, andcontrol goes back to TOby clearing SC to 0.

The beginning of the next instruction cycle has the condition RTO
and the content of PC is equal to 1. The control then goes through an
instruction cycle that fetches and executes the BUN instruction in
location 1.

Flow chart for computer operation.

The final flowchart of the instruction cycle, including the
interruptcycle for the basiccomputer, is shown in Figure

Page 49

2.15.

The interrupt flip-flop R may be set at any time during the indirect or
executephases.

The control returns to timing signal TO after SC is cleared to 0.

If R =1, the computer goes through an interrupt cycle. If R = 0, the computer goes
through an instruction cycle.

If the instruction is one of the memory-reference instructions, the
computer first checks if there is an indirect address and then
continues to execute the decoded instruction according to the
flowchart.

If the instruction is one of the register-reference instructions, it is
executed with one of the microoperations register reference.

If it is an input-output instruction, it is executed with one of the
microoperation’s input-output reference.

0
start
SC«0,IEN<0, R«0
R’Tn 4 RTO
[ARcPC | ..; [AR<0, TR PC .
1 1 | 1
IR <« M[AR],PC « PC +1 M[AR] < TR,PC « 0 R'*
| R'T | 5
AR « IR(0~11),] «IR(15) PC<PC+1,IEN«O
D,...D; « DecodeIR(12~ 14) R <« F_s_c <0
=1(Regqisteror |/O) /D7k=0(MemorvRef)
\/
=1 (1/O) =0 (Register) =1(Indir) =0(Dir)
" LV
D.IT. ¢ +DI'T, D,/IT3 ¢ +D,/I'T3
Execute Execute |AR <- M[AR]l | Idle |
I{e] RR
Instruction Instruction b 1
Execute MR |D;'T4
Instruction

Figure: Flowchart for computer
operation

Department of CSE

Page 50

	Unit-1: REGISTER TRANSFER AND MICROOPERATIONS
	BASIC DEFINITIONS:
	if (P=1) then R2← R1
	P: R2← R1

	Bus and Memory Transfers:
	Common bus system is with multiplexers:
	BUS← C, R1← BUS
	R1← C

	Memory Transfer:
	Read: DR<- M [AR]
	Write: M [AR] <- R1

	Arithmetic Micro-operations:
	R3 ← R1 + R2
	R3 ← R1 + R2 + 1
	Binary Adder:
	BINARY ADDER.

	Binary Adder – Subtractor:
	Binary Incrementer:

	Arithmetic Circuit:
	Addition:
	Subtraction:
	Increment:
	Decrement:
	List of Logic Microoperations:
	Hardware Implementation:

	Shift Microoperations:
	 Logical Shift:
	 Circular Shift:
	 Arithmetic Shift:
	Hardware Implementation:

	UNIT 1 – BASIC COMPUTER ORGANIZATION AND DESIGN
	CONTENTS:
	Operation Code
	Accumulator (AC)
	Stored Program Organization
	Figure 2.1: Stored Program Organization
	Direct and Indirect addressing of basic computer.
	Figure 2.2: Direct Address Figure 2.3: Indirect Address
	Figure 2.4: Basic Computer Register and Memory
	Table 2.1: List of Registers for Basic Computer Common Bus System for basic computer register.
	Figure 2.5: Basic computer registers connected to a common bus
	Instruction Format with its types.
	Figure 2.6: Basic computer instruction format
	Control Unit with timing diagram.
	Figure: Control unit of basic computer
	Timing Diagram:
	Figure: Example of control timing signals
	Instruction cycle
	Figure 2.9: Flowchart for instruction cycle (initial configuration)
	Register reference instruction.
	Memory reference instructions
	AND to AC
	ADD to AC
	DA: Load to AC
	STA: Store AC
	BUN: Branch Unconditionally
	BSA: Branch and Save Return Address
	Figure2.10: Example of BSA instruction execution
	ISZ: Increment and Skip if Zero
	Control Flowchart
	Figure: Input-output configuration
	The process of input information transfer:
	The process of outputting information:

	Input-Output instructions
	Table 2.2: Input Output Instructions
	Interrupt Cycle
	Figure 2.13: Flowchart for interrupt cycle
	Interrupt Cycle

	Figure 2.14: Demonstration of the interrupt cycle
	Register transfer statements for the interrupt cycle

	Flow chart for computer operation.
	Figure: Flowchart for computer operation

