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Digital Computers 
 Introduction, Block diagram of Digital Computer, Definition of Computer 

Organization, Computer Design and Computer Architecture.  

Register Transfer Language and Micro operations 
Register Transfer language, Register Transfer, Bus and memory transfers, 

Arithmetic Micro operations, logic micro operations, shift micro operations, 

Arithmetic logic shift unit.  

Basic Computer Organization and Design 
Instruction codes, Computer Registers Computer instructions, Timing and 

Control, Instruction cycle, Memory Reference Instructions, Input – Output and 

Interrupt. 
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Unit-1: REGISTER TRANSFER AND MICROOPERATIONS 
 

CONTENTS: 
 

 Register Transfer Language 

 Register Transfer 

 Bus And Memory Transfers 

 Types of Micro-operations 

 Arithmetic Micro-operations 

 Logic Micro-operations 

 Shift Micro-operations 

 Arithmetic Logic Shift Unit 

BASIC DEFINITIONS: 
 

 A digital system is an interconnection of digital hardware modules. 

 The modules are registers, decoders, arithmetic elements, and control logic. 

 The various modules are interconnected with common data and control paths to form a digital 

computer system. 

 Digital modules are best defined by the registers they contain and the 

operations that are performed on the data stored in them. 

 The operations executed on data stored in registers are called microoperations. 

  A microoperation is an elementary operation performed on the information stored in one or more 

registers. 

 The result of the operation may replace the previous binary 

information of a register or may be transferred to another register. 

 Examples of microoperations are shift, count, clear, and load. 

 The internal hardware organization of a digital computer is best defined 

by specifying: 

1. The set of registers it contains and their function. 
 

2. The sequence of microoperations performed on the binary information      stored in the 

registers. 

3. The control that initiates the sequence of microoperations. 
 

REGISTER TRANSFER LANGUAGE: 
 

 The symbolic notation used to describe the micro-operation transfer among registers is called RTL 

(Register Transfer Language). 

 The use of symbols instead of a narrative explanation provides an organized and concise manner 

for listing the micro-operation sequences in registers and the control functions that initiate them. 
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 A register transfer language is a system for expressing in symbolic form the microoperation 

sequences among the registers of a digital module. 

 It is a convenient tool for describing the internal organization of digital computers in concise and 

precise manner. 

Registers: 
 

 Computer registers are designated by upper case letters (and optionally followed by digits or 

letters) to denote the function of the register. 

 For example, the register that holds an address for the memory unit is usually called a memory 

address register and is designated by the name MAR. 

 Other designations for registers are PC (for program counter), IR (for instruction register, and R1 

(for processor register). 

 The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting 

from 0 in the rightmost position and increasing the numbers toward the left. 

 Figure 4-1 shows the representation of registers in block diagram form. 
 

  The most common way to represent a register is by a rectangular box with the name of the 

register inside, as in Fig. 4-1(a). 

 The individual bits can be distinguished as in (b). 

 The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c). 

 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for 

low byte) and bits 8 through 15 are assigned the symbol H (for high byte). 

  The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order 

byte and PC (8-15) or PC (H) to the high-order byte. 

Register Transfer: 
 

 Information transfer from one register to another is designated in symbolic form by means of a 

replacement operator. 

 The statement R2← R1 denotes a transfer of the content of register R1 into register R2. 

 It designates a replacement of the content of R2 by the content of R1. 

 By definition, the content of the source register R 1 does not change after the transfer. 

 If we want the transfer to occur only under a predetermined control condition then it can be 

shown by an if-then statement. 

if (P=1) then R2← R1 
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 P is the control signal generated by a control section. 

 We can separate the control variables from the register transfer operation by specifying a Control 

Function. 

 Control function is a Boolean variable that is equal to 0 or 1. 

 control function is included in the statement as 

P: R2← R1 

  Control condition is terminated by a colon implies transfer operation be executed by the 

hardware only if P=1. 

 Every statement written in a register transfer notation implies a hardware construction for 

implementing the transfer. 

 Figure 4-2 shows the block diagram that depicts the transfer from R1 to R2. 
 

 

 

 

 The n outputs of register R1 are connected to the n inputs of register R2. 

 The letter n will be used to indicate any number of bits for the register. It will be replaced by an 

actual number when the length of the register is known. 

 Register R2 has a load input that is activated by the control variable P. 

  It is assumed that the control variable is synchronized with the same clock as the one applied to 

the register. 

 As shown in the timing diagram, P is activated in the control section by the rising edge 

of a clock pulse at time t. 

 The next positive transition of the clock at time t + 1 finds the load input active and the data inputs 

of R2 are then loaded into the register in parallel. 

 P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition 

while P remains active. 

 Even though the control condition such as P becomes active just after time t, the actual transfer 

does not occur until the register is triggered by the next positive transition of the clock at time 
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t +1. 

 The basic symbols of the register transfer notation are listed in below table 
 

Symbol Description Examples 

Letters(and numerals) Denotes a register MAR, R2 

Parentheses ( ) Denotes a part of a register R2(0-7), R2(L) 

Arrow <-- Denotes transfer of information R2 <-- R1 

Comma , Separates two microoperations R2 <-- R1, R1 <-- R2 

 
 A comma is used to separate two or more operations that are executed at the same time. 

 The statement 

T : R2← R1, R1← R2 (exchange operation) 

denotes an operation that exchanges the contents of two rgisters during one common clock pulse 

provided that T=1. 

Bus and Memory Transfers: 

 A more efficient scheme for transferring information between registers in a multiple-register 

configuration is a Common Bus System. 

 A common bus consists of a set of common lines, one for each bit of a register. 

  Control signals determine which register is selected by the bus during each particular register 

transfer. 

 Different ways of constructing a Common Bus System 

 Using Multiplexers 

 Using Tri-state Buffers 

Common bus system is with multiplexers: 
 

 The multiplexers select the source register whose binary information is then placed 

on the bus. 

 The construction of a bus system for four registers is shown in below Figure. 
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 The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two 

selection inputs, S1 and S0. 

  For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled 

A1. 

 The diagram shows that the bits in the same significant position in each register are connected to 

the data inputs of one multiplexer to form one line of the bus. 

 Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of 

the registers, and similarly for the other two bits. 

 The two selection lines Si and So are connected to the selection inputs of all four multiplexers. 

 The selection lines choose the four bits of one register and transfer them into the four-line 

common bus. 

 When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs 

that form the bus. 

 This causes the bus lines to receive the content of register A since the outputs of this register are 

connected to the 0 data inputs of the multiplexers. 

 Similarly, register B is selected if S1S0 = 01, and so on. 

 Table 4-2 shows the register that is selected by the bus for each of the four possible binary value 

of the selection lines. 

 

 In general a bus system has 

 multiplex “k” Registers 
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 each register of “n” bits 

 to produce “n-line bus” 

 no. of multiplexers required = n 

 size of each multiplexer = k x 1 

 When the bus is includes in the statement, the register transfer is symbolized as follows: 

BUS← C, R1← BUS 

 The content of register C is placed on the bus, and the content of the bus is loaded into register R1 

by activating its load control input. If the bus is known to exist in the system, it may be convenient 

just to show the direct transfer. 

R1← C 
 

Three-State Bus Buffers: 
 

 A bus system can be constructed with three-state gates instead of multiplexers. 

 A three-state gate is a digital circuit that exhibits three states. 

 Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate. 

 The third state is a high-impedance state. 

 The high-impedance state behaves like an open circuit, which means that the output is 

disconnected and does not have logic significance. 

 Because of this feature, a large number of three-state gate outputs can be connected with wires to 

form a common bus line without endangering loading effects. 

 The graphic symbol of a three-state buffer gate is shown in Fig. 4-4. 
 

 It is distinguished from a normal buffer by having both a normal input and a control input. 

  The control input determines the output state. When the control input is equal to 1, the output is 

enabled and the gate behaves like any conventional buffer, with the output equal to the normal 

input. 

 When the control input is 0, the output is disabled and the gate goes to a high-impedance state, 

regardless of the value in the normal input. 

 The construction of a bus system with three-state buffers is shown in Fig. 4 
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 The outputs of four buffers are connected together to form a single bus line. 

 The control inputs to the buffers determine which of the four normal inputs will communicate with 

the bus line. 

 No more than one buffer may be in the active state at any given time. The connected buffers must 

be controlled so that only one three-state buffer has access to the bus line while all other buffers 

are maintained in a high impedance state. 

 One way to ensure that no more than one control input is active at any given time is to use a 

decoder, as shown in the diagram. 

 When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a 

high-impedance state because all four buffers are disabled. 

 When the enable input is active, one of the three-state buffers will be active, depending on the 

binary value in the select inputs of the decoder. 

Memory Transfer: 

 The transfer of information from a memory word to the outside environment is called a read 

operation. 

 The transfer of new information to be stored into the memory is called a write operation. 

 A memory word will be symbolized by the letter M. 

 The particular memory word among the many available is selected by the memory address during 

the transfer. 

 It is necessary to specify the address of M when writing memory transfer operations. 

 This will be done by enclosing the address in square brackets following the letter M. 

 Consider a memory unit that receives the address from a register, called the address register, 

symbolized by AR. 

 The data are transferred to another register, called the data register, symbolized by DR. 

 The read operation can be stated as follows: 

 
Read: DR<- M [AR] 

 
 This causes a transfer of information into DR from the memory word M selected by the address in 

AR. 

 The write operation transfers the content of a data register to a memory word M selected by the 

address. Assume that the input data are in register R1 and the address is in AR. 

 The write operation can be stated as follows: 

Write: M [AR] <- R1 
 

Types of Micro-operations: 
 

 Register Transfer Micro-operations: Transfer binary information from one register to another. 

 Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in registers. 

 Logical Micro-operations: Perform bit manipulation operations on data stored in registers. 

 Shift Micro-operations: Perform shift operations on data stored in registers. 

 
 Register Transfer Micro-operation doesn’t change the information content when the binary 

information moves from source register to destination register. 
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  Other three types of micro-operations change the information change the information content 

during the transfer. 

 
 

Arithmetic Micro-operations: 

 The basic arithmetic micro-operations are 

o Addition 

o Subtraction 

o Increment 

o Decrement 

o Shift 

 The arithmetic Micro-operation defined by the statement below specifies the add micro- 

operation. 

R3 ← R1 + R2 

 It states that the contents of R1 are added to contents of R2 and sum is transferred to R3. 

  To implement this statement hardware requires 3 registers and digital component that performs 

addition 

 Subtraction is most often implemented through complementation and addition. 

 The subtract operation is specified by the following statement 

R3 ← R1 + R2 + 1 

 instead of minus operator, we can write as 

 R2 is the symbol for the 1’s complement of R2 

 Adding 1 to 1’s complement produces 2’s complement 

 Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2. 

Binary Adder: 
 

 Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called FULL ADDER. 

 Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is called 

BINARY ADDER. 

 Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary adder. 

 

 The augends bits of A and the addend bits of B are designated by subscript numbers from 

right to left, with subscript 0 denoting the low-order bit. 

 The carries are connected in a chain through the full-adders. The input carry to the 

binary adder is Co and the output carry is C4. The S outputs of the full-adders generate 

the required sum bits. 

 An n-bit binary adder requires n full-adders. 
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Binary Adder – Subtractor: 

 The addition and subtraction operations can be combined into one common circuit by including an 

exclusive-OR gate with each full-adder. 

 A 4-bit adder-subtractor circuit is shown in Fig. 4-7. 

 The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the 

circuit becomes a subtractor. 

 Each exclusive-OR gate receives input M and one of the inputs of B 

  When M = 0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0, 

and the circuit performs A plus B. 

 When M = 1, we have B xor 1 = B' and Co = 1. 

 The B inputs are all complemented and a 1 is added through the input carry. 

 The circuit performs the operation A plus the 2's complement of B. 

Binary Incrementer: 
 

 The increment microoperation adds one to a number in a register. 

 For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented. 

 This can be accomplished by means of half-adders connected in cascade. 

 The diagram of a 4-bit 'combinational circuit incrementer is shown in Fig. 4-8. 

 One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other 

input is connected to the least significant bit of the number to be incremented. 

  The output carry from one half-adder is connected to one of the inputs of the next-higher-order 

half-adder. 

 The circuit receives the four bits from A0 through A3, adds one to it, and generates the 

incremented output in S0 through S3. 

 The output carry C4 will be 1 only after incrementing binary 1111. This also causes outputs 

S0 through S3 to go to 0. 
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 The circuit of Fig. 4-8 can be extended to an n -bit binary incrementer by extending the diagram to 

include n half-adders. 

 The least significant bit must have one input connected to logic-1. The other inputs receive the 

number to be incremented or the carry from the previous stage. 

Arithmetic Circuit: 

 The basic component of an arithmetic circuit is the parallel adder. 

 By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic 

operations. 

 The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four full-adder circuits 

that constitute the 4-bit adder and four multiplexers for choosing different operations. 
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 There are two 4-bit inputs A and B and a 4-bit output D. 

 The four inputs from A go directly to the X inputs of the binary adder. 

 Each of the four inputs from B are connected to the data inputs of the multiplexers. 

 The multiplexers data inputs also receive the complement of B. 

 The other two data inputs are connected to logic-0 and logic-1. 

 The four multiplexers are controlled by two selection inputs S1 and S0. The input carry Cin, goes to 

the carry input of the FA in the least significant position. The other carries are connected from one 

stage to the next. 

 By controlling the value of Y with the two selection inputs S1 and S0 and making Cin equal to 0 or 

1, it is possible to generate the eight arithmetic microoperations listed in Table 44. 
 

 

Addition: 
 

 When S1S0= 00, the value of B is applied to the Y inputs of the adder. 

 If Cir, = 0, the output D =A+B. 

 If Cin = 1, output D=A+B + 1. 

 Both cases perform the add microoperation with or without adding the input carry. 

Subtraction: 
 

 When S1S0 = 01, the complement of B is applied to the Y inputs of the adder. 

  If Cin = 1, then D = A + B + 1. This produces A plus the 2's complement of B, 

which is equivalent to a subtraction of A -B. 

 When Cin = 0 then D = A + B. This is equivalent to a subtract with borrow, that 

is, A-B-1. 

Increment: 
 

 When S1S0 = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y inputs. 

The output becomes D = A + 0 + Cin. This gives D = A when Cin = 0 and D = A + 1 when Cin = 1. 

 In the first case we have a direct transfer from input A to output D. 

 In the second case, the value of A is incremented by 1. 
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Decrement: 
 

 When S1S0= 11, all l's are inserted into the Y inputs of the adder to produce the decrement 

operation D = A -1 when Cin = 0. 

  This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement of 

binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F = A + 2's 

complement of 1 = A — 1. When Cin = 1, then D = A -1 + 1=A, which causes a direct transfer 

from input A to output D. 

Logic Micro-operations: 
 

 Logic microoperations specify binary operations for strings of bits stored in registers. 

 These operations consider each bit of the register separately and treat them as binary variables. 

 For example, the exclusive-OR microoperation with the contents of two registers RI and R2 is 

symbolized by the statement 
 

 It specifies a logic microoperation to be executed on the individual bits of the registers provided 

that the control variable P = 1. 

List of Logic Microoperations: 
 

 There are 16 different logic operations that can be performed with two binary variables. 

  They can be determined from all possible truth tables obtained with two binary variables as 

shown in Table 4-5. 

 

 The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first 

column of Table 4-6. 

 The 16 logic microoperations are derived from these functions by replacing variable x by the 

binary content of register A and variable y by the binary content of register B. 

 The logic micro-operations listed in the second column represent a relationship between the 

binary content of two registers A and B. 
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Hardware Implementation: 
 

 The hardware implementation of logic microoperations requires that logic gates be inserted for 

each bit or pair of bits in the registers to perform the required logic function. 

  Although there are 16 logic microoperations, most computers use only four--AND, OR, 

XOR (exclusive-OR), and complement from which all others can be derived. 

 Figure 4-10 shows one stage of a circuit that generates the four basic logic microoperations. 

 It consists of four gates and a multiplexer. Each of the four logic operations is generated through a 

gate that performs the required logic. 

 The outputs of the gates are applied to the data inputs of the multiplexer. The two selection inputs 

S1 and S0 choose one of the data inputs of the multiplexer and direct its value to the output. 
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Some Applications: 
 

 Logic micro-operations are very useful for manipulating individual bits or a portion of a word stored in a 

register. 

 They can be used to change bit values, delete a group of bits or insert new bits values into a register. 

 The following example shows how the bits of one register (designated by A) are manipulated by logic 

microoperations as a function of the bits of another register (designated by B). 

 Selective set 

 The selective-set operation sets to 1 the bits in register A where there are corresponding l's 

in register B. It does not affect bit positions that have 0's in B. The following numerical 

example clarifies this operation: 

 
 

 The OR microoperation can be used to selectively set bits of a register. 

 
 Selective complement 

 The selective-complement operation complements bits in A where there are corresponding 

1's in B. It does not affect bit positions that have 0's in B. For example: 

 
 

 The exclusive-OR microoperation can be used to selectively complement bits of a register. 

 Selective clear 

 The   selective-clear   operation   clears   to   0   the   bits   in   A   only   where   there are 

corresponding l's in B. For example: 

 
 
 

 The corresponding logic microoperation is 

 Mask 

 The mask operation is similar to the selective-clear operation except that the bits of A are cleared 

only where there are corresponding O's in B . The mask operation is an AND micro operation as 

seen from the following numerical  example: 

 

 Insert 

 The insert operation inserts a new value into a group of bits. This is done by first masking the bits 

and then ORing them with the required value. 

 



 

Department of CSE Page 29  

 For example, suppose that an A register contains eight bits, 0110 1010. To replace the four leftmost 

bits by the value 1001 we first mask the four unwanted bits: 

 

 The mask operation is an AND microoperation and the insert operation is an OR 

microoperation. 

 

 Clear 

 The clear operation compares the words in A and B and produces an all 0's result if the two 

numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown 

by the following example 
 

Shift Microoperations: 

 Shift microoperations are used for serial transfer of data. 

 The contents of a register can be shifted to the left or the right. 

 During a shift-left operation the serial input transfers a bit into the rightmost position. 

 During a shift-right operation the serial input transfers a bit into the leftmost position. 

 There are three types of shifts: logical, circular, and arithmetic. 

 The symbolic notation for the shift microoperations is shown in Table 4-7. 

 

 Logical Shift: 

o A logical shift is one that transfers 0 through the serial input. 

o The symbols shl and shr for logical shift-left and shift-right microoperations. 
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o The microoperations that specify a 1-bit shift to the left of the content of register R and a 

1-bit shift to the right of the content of register R shown in table 4.7. 

o The bit transferred to the end position through the serial input is assumed to be 0 during a 

logical shift. 

 
 Circular Shift: 

o The circular shift (also known as a rotate operation) circulates the bits of the register 

around the two ends without loss of information. 

o This is accomplished by connecting the serial output of the shift register to its serial input. 

o We will use the symbols cil and cir for the circular shift left and right, respectively. 

 Arithmetic Shift: 

o An arithmetic shift is a microoperation that shifts a signed binary number to the left or 

right. 

o An arithmetic shift-left multiplies a signed binary number by 2. 

o An arithmetic shift-right divides the number by 2. 

o Arithmetic shifts must leave the sign bit unchanged because the sign of the number 

remains the same when it is multiplied or divided by 2. 

 
 

Hardware Implementation: 
 

 A combinational circuit shifter can be constructed with multiplexers as shown in Fig. 4-12. 

 The 4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3. 

 There are two serial inputs, one for shift left (IL) and the other for shift right (IR). 

 When the selection input S=0 the input data are shifted right (down in the diagram). 

 When S = 1, the input data are shifted left (up in the diagram). 

 The function table in Fig. 4-12 shows which input goes to each output after the shift. 

 A shifter with n data inputs and outputs requires n multiplexers. 

 The two serial inputs can be controlled by another multiplexer to provide the three possible types of 

shifts. 
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Arithmetic Logic Shift Unit: 

 

 Instead of having individual registers performing the microoperations directly, computer systems 

employ a number of storage registers connected to a common operational unit called an arithmetic 

logic unit, abbreviated ALU. 

 The ALU is a combinational circuit so that the entire register transfer operation from the 

source registers through the ALU and into the destination register can be performed during one 

clock pulse period. 

 The shift microoperations are often performed in a separate unit, but sometimes the shift unit is 

made part of the overall ALU. 

 The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one 

ALU with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig. 

4- 13. 

 Particular microoperation is selected with inputs S1 and S0. A 4 x 1 multiplexer at the output 

chooses between an arithmetic output in Di and a logic output in Ei. 

 The data in the multiplexer are selected with inputs S3 and S2. The other two data inputs to the 

multiplexer receive inputs Ai-1 for the shift-right operation and Ai+1 for the shift-left operation. 

 The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic 

operations, and two shift operations. 

 Each operation is selected with the five variables S3, S2, S1, S0 and Cin. 

 The input carry Cin is used for selecting an arithmetic operation only. 
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 Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic operations and are 

selected with S3S2 = 00. 

 The next four are logic and are selected with S3S2 = 01. 

 The input carry has no effect during the logic operations and is marked with don't-care x’s. 

 The last two operations are shift operations and are selected with S3S2= 10 and 11. 

 The other three selection inputs have no effect on the shift. 
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UNIT 1 – BASIC COMPUTER ORGANIZATION AND DESIGN 
 

CONTENTS: 

 

 Instruction codes 
 

 Computer Registers Computer instructions 
 

 Timing and Control 
 

 Instruction cycle 
 

 Memory Reference Instructions 
 

 Input – Output and Interrupt. 

 
INSTRUCTION CODE 

An instruction code is a group of bits that instruct the computer to perform a specific operation. 

 
Operation Code 

The operation code of an instruction is a group of bits that define such operations as add, 
subtract, multiply, shift, and complement. The number of bits required for the operation code 
of an instruction depends on the total number of operations available in the computer. The 

n 
operation code must consist of at least n bits for a given 2 (or less) distinct operations. 

 
Accumulator (AC) 

Computers that have a single-processor register usually assign to it the name accumulator 
(AC) accumulator and label it AC. The operation is performed with the memory operand and 
the content of AC. 

 

Stored Program Organization 

 The simplest way to organize a computer is to have one processor register 
and an instruction code format with two parts. 

 The first part specifies the operation to be performed and the second 
specifies an address. 

 The memory address tells the control where to find an operand in memory. 

 This operand is read from memory and used as the data to be operated on together 
withthe data stored in the processor register. 

 The following figure 2.1 shows this type of organization. 
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Figure 2.1: Stored Program Organization 

 
 Instructions are stored in one section of memory and data in another. 

 For a memory unit with 4096 words, we need 12 bits to specify an address since 2
12 

= 
4096. 

 
 If we store each instruction code in one 16-bit memory word, we have available four bits 

for operation code (abbreviated opcode) to specify one out of 16 possible operations, and 
12 bits to specify the address of an operand. 

 The control reads a 16-bit instruction from the program portion of memory. 

 It uses the 12-bit address part of the instruction to read a 16-bit operand from the data 
portion of memory. 

 It then executes the operation specified by the operation code. 

 Computers that have a single-processor register usually assign to it the name 
accumulator and label it AC. 

 If an operation in an instruction code does not need an operand from memory, the restof 
the bits in the instruction can be used for other purposes. 

 For example, operations such as clear AC, complement AC, and increment AC operate on 
data stored in the AC register. They do not need an operand from memory. For these types 
of operations, the second part of the instruction code (bits 0 through 11) is not needed for 
specifying a memory address and can be used to specify other operations for the 
computer. 

 
Direct and Indirect addressing of basic computer. 

 The second part of an instruction format specifies the address of an operand, the 
instruction is said to have a direct address. 

 In Indirect address, the bits in the second part of the instruction designate an address ofa 
memory word in which the address of the operand is found. 

 One bit of the instruction code can be used to distinguish between a direct and an 
indirect address. 

 It consists of a 3-bit operation code, a 12-bit address, and an indirect address mode bit 
designated by I. 

 The mode bit is 0 for a direct address and 1 for an indirect address. 
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22 35 

300 

457 

1350 

+ + 

AC AC 

300 ADD 1 457 ADD 0 

Operand 

Operand 

1350 

 A direct address instruction is shown in Figure 2.2. It is placed in address 22 in memory. The 

I bit is 0, so the instruction is recognized as a direct address instruction. 

 The opcode specifies an ADD instruction, and the address part is the binary equivalent of 
457. 

 The control finds the operand in memory at address 457 and adds it to the content of 
AC. 

 The instruction in address 35 shown in Figure 2.3 has a mode bit I = 1, recognized as an 
indirect address instruction. 

 The address part is the binary equivalent of 300. 

 The control goes to address 300 to find the address of the operand. The address of the 
operand in this case is 1350. The operand found in address 1350 is then added to the 
content of AC. 

 The indirect address instruction needs two references to memory to fetch an operand. 

1. The first reference is needed to read the address of the operand 

2. Second reference is for the operand itself. 

 The memory word that holds the address of the operand in an indirect address 
instruction is used as a pointer to an array of data. 

 

15 14 12 11 0 

I Opcode Address 

 

Memory Memory 

 

Figure 2.2: Direct Address Figure 2.3: Indirect Address 
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Direct Address Indirect Address 

When the second part of an instruction code specifies 

the addressof an operand, the instruction is said to have 

a direct address. 

When the second part of an instruction code specifies 
the address of a memory word in which the address 

of the operand,the instruction is said to have a direct 

address. 

For instance the instruction MOV R0 00H. R0, when 

converted to machinelanguage is the physical address 
of register R0. The instruction moves 0 to R0 

For instance the instruction MOV @R0 00H,when 

converted to machine language, @R0becomes 

whatever is stored in R0, and thatis the address used 
to move 0 to. It can be whatever is stored in R0. 

 

Registers of basic computer 

 It is necessary to provide a register in the control unit for storing the instruction code 
after it is read from memory. 

 The computer needs processor registers for manipulating data and a register for holdinga 
memory address. 

 These requirements dictate the register configuration shown in Figure 2.4. 
 

Figure 2.4: Basic Computer Register and Memory 

 

 The data register (DR) holds the operand read from memory. 

 The accumulator (AC) register is a general purpose processing register. 

 The instruction read from memory is placed in the instruction register (IR). 

 The temporary register (TR) is used for holding temporary data during the processing. 

 The memory address register (AR) has 12 bits. 

 The program counter (PC) also has 12 bits and it holds the address of the next instruction 
to be read from memory after the current instruction is executed. 

 Instruction words are read and executed in sequence unless a branch instruction is 
encountered. A branch instruction calls for a transfer to a nonconsecutive instruction in 
the program. 

 Two registers are used for input and output. The input register (INPR) receives an 8-bit 
character from an input device. The output register (OUTR) holds an 8-bit character for an 
output device. 
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Registe

r 

Symbol 

Bits Register Name Function 

DR 16 Data register Holds memory operand 

AR 

AC 

12 

16 

Address register 

Accumulator 

Holds address for memory 

Processor register 

IR 16 Instruction register Holds instruction code 

PC 12 Program counter Holds address of instruction 

TR 16 Temporary register Holds temporary data 

INPR 8 Input register Holds input character 

OUTR 8 Output register Holds output character 

Table 2.1: List of Registers for Basic Computer 

Common Bus System for basic computer register. 

What is the requirement of common bus System? 

 The basic computer has eight registers, a memory unit and a control unit. 

 Paths must be provided to transfer information from one register to another and 
between memory and register. 

 The number of wires will be excessive if connections are between the outputs of each 
register and the inputs of the other registers. An efficient scheme for transferring 
information in a system with many register is to use a common bus. 

 The connection of the registers and memory of the basic computer to a common bus 
system is shown in figure 2.5. 

 The outputs of seven registers and memory are connected to the common bus. The 
specific output that is selected for the bus lines at any given time is determined from the 
binary value of the selection variables S2, S1, and S0. 

 The number along each output shows the decimal equivalent of the required binary 
selection. 

 The particular register whose LD (load) input is enabled receives the data from the bus 
during the next clock pulse transition. The memory receives the contents of the bus when 
its write input is activated. The memory places its 16-bit output onto the bus whenthe read 
input is activated and S2 S1 S0 = 1 1 1. 

 Four registers, DR, AC, IR, and TR have 16 bits each. 

 Two registers, AR and PC, have 12 bits each since they hold a memory address. 

 When the contents of AR or PC are applied to the 16-bit common bus, the four most 
significant bits are set to 0’s. When AR and PC receive information from the bus, only the 
12 least significant bits are transferred into the register. 

 The input register INPR and the output register OUTR have 8 bits each and communicate 
with the eight least significant bits in the bus. INPR is connected to provide information 
to the bus but OUTR can only receive information from the bus. 
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Figure 2.5: Basic computer registers connected to a common bus 

 
 Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). 

Tworegisters have only a LD input. 

 AR must always be used to specify a memory address; therefore memory address is 
connected to AR. 

 The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets 
ofinputs. 

1. Set of 16-bit inputs come from the outputs of AC. 

2. Set of 16-bits come from the data register DR. 

3. Set of 8-bit inputs come from the input register INPR. 

 The result of an addition is transferred to AC and the end carry-out of the addition is 
transferred to flip-flop E (extended AC bit). 

 The clock transition at the end of the cycle transfers the content of the bus into the 
designated destination register and the output of the adder and logic circuit into AC. 

Instruction Format with its types. 

 The basic computer has three instruction code formats, as shown in figure 2.6. 
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Figure 2.6: Basic computer instruction format 

 Each format has 16 bits. 

 The operation code (opcode) part of the instruction contains three bits and the meaningof 
the remaining 13 bits depends on the operation code encountered. 

 A memory-reference instruction uses 12 bits to specify an address and one bit to 
specify the addressing mode I. I is equal to 0 for direct address and to 1 for indirect 
address. 

 The register reference instructions are recognized by the operation code 111 with a 0 in 
the leftmost bit (bit 15) of the instruction. A register-reference instruction specifies an 
operation on or a test of the AC register. An operand from memory is not needed; 
therefore, the other 12 bits are used to specify the operation or test to be executed. 

 An input-output instruction does not need a reference to memory and is recognized by 
the operation code 111 with a 1 in the leftmost bit of the instruction. The remaining 12 
bits are used to specify the type of input-output operation or test performed. 

 
Control Unit with timing diagram. 

 The block diagram of the control unit is shown in figure 2.7. 

 Components of Control unit are 

1. Two decoders 

2. A sequence counter 

3. Control logic gates 

 An instruction read from memory is placed in the instruction register (IR). In control unit  
the IR is divided into three parts: I bit, the operation code (12-14)bit, and bits 0 through 
11. 

 The operation code in bits 12 through 14 are decoded with a 3 X 8 decoder. 
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Figure: Control unit of basic computer 
 

 Bit-15 of the instruction is transferred to a flip-flop designated by the symbol I. 

 The eight outputs of the decoder are designated by the symbols D0 through D7. Bits 0 
through 11 are applied to the control logic gates. The 4‐bit sequence counter can countin 
binary from 0 through 15.The outputs of counter are decoded into 16 timing signals T0 
through T15. 

 The sequence counter SC can be incremented or cleared synchronously. Most of the time, the 
counter is incremented to provide the sequence of timing signals out of 4 X 16 decoder. Once 
in awhile, the counter is cleared to 0, causing the next timing signal to be T0. 

 As an example, consider the case where SC is incremented to provide timing signals T0, T1, 
T2, T3 and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active. This 
is expressed symbolically by the statement 

D3T4: SC ← 0 

Timing Diagram: 

 The timing diagram figure2.8 shows the time relationship of the control signals. 

 The sequence counter SC responds to the positive transition of the clock. 

 Initially, the CLR input of SC is active. 

 The first positive transition of the clock clears SC to 0, which in turn activates the timing T0 
out of the decoder. T0 is active during one clock cycle. The positive clock transition labeled 
T0 in the diagram will trigger only those registers whose control inputs are connected to timing signal 
T0. 

 SC is incremented with every positive clock transition, unless its CLR input is active. 

 This procedures the sequence of timing signals T0, T1, T2, T3 and T4, and so on. If SC is 
notcleared, the timing signals will continue with T5, T6, up to T15 and back to T0. 
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Figure: Example of control timing signals 

 

 The last three waveforms shows how SC is cleared when D3T4 = 1. Output D3 from the 
operation decoder becomes active at the end of timing signal T2. When timing signal T4 
becomes active, the output of the AND gate that implements the control function D3T4 
becomes active. 

 This signal is applied to the CLR input of SC. On the next positive clock transition the 
counter is cleared to 0. This causes the timing signal T0 to become active instead of T5 that 
would have been active if SC were incremented instead of cleared. 

Instruction cycle 

 A program residing in the memory unit of the computer consists of a sequence of 
instructions. In the basic computer each instruction cycle consists of the following phases: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect address. 

4. Execute the instruction. 

 After step 4, the control goes back to step 1 to fetch, decode and execute the nex 
instruction. 
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 This process continues unless a HALT instruction is encountered. 

Figure 2.9: Flowchart for instruction cycle (initial configuration) 

 

 The flowchart presents an initial configuration for the instruction cycle and shows how the 
control determines the instruction type after the decoding. 

 If D7 = 1, the instruction must be register-reference or input-output type. If D7 = 0, the 
operation code must be one of the other seven values 110, specifying a memory- reference 
instruction. Control then inspects the value of the first bit of the instruction, which now 
available in flip-flop I. 

 If D7 = 0 and I = 1, we have a memory-reference instruction with an indirect address. It is 
then necessary to read the effective address from memory. 

 The three instruction types are subdivided into four separate paths. The selected ration is 
activated with the clock transition associated with timing signal T3.This can be symbolized as follows: 

D’7 I T3: AR M [AR] 
D’7 I’ T3: Nothing 
D7 I’ T3: Execute a register-reference instruction 

D7 I T3: Execute an input-output instruction 

 When a memory-reference instruction with I = 0 is encountered, it is not necessary to do 
anything since the effective address is already in AR. 

 However, the sequence counter SC must be incremented when D’7 I T3 = 1, so that the 
execution of the memory-reference instruction can be continued with timing variable T4. 

 A register-reference or input-output instruction can be executed with the click associated with 
timing signal T3. After the instruction is executed, SC is cleared to 0 and control returns to 
the fetch phase with T0 =1. SC is either incremented or cleared to 0 with every positive clock 
transition. 
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Register reference instruction. 

 When the register-reference instruction is decoded, D7 bit is set to 1. 

 Each control function needs the Boolean relation D7 I' T3 

15 12 11 0 

0 1 1 1 Register Operation 

 
There are 12 register-reference instructions listed below: 

 r: SC  0 Clear SC 

CLA rB11: AC    0 Clear AC 

CLE rB10: E    0 Clear E 

CMA rB9: AC    AC’ Complement AC 

CME rB8: E    E’ Complement E 

CIR rB7: AC    shr AC, AC(15)    E, E    

AC(0) 

Circular Right 

CIL rB6: AC    shl AC, AC(0)    E, E    

AC(15) 

Circular Left 

INC rB5: AC    AC + 1 Increment AC 

SPA rB4: if (AC(15) = 0) then (PC    PC+1) Skip if positive 

SNA rB3: if (AC(15) = 1) then (PC    PC+1 Skip if negative 

SZA rB2: if (AC = 0) then (PC    PC+1) Skip if AC is zero 

SZE rB1: if (E = 0) then (PC    PC+1) Skip if E is zero 

HLT rB0: S  0 (S is a start-stop flip-flop) Halt computer 

 

 

 These 12 bits are available in IR (0-11). They were also transferred to AR during time T2. 

 These instructions are executed at timing cycle T3. 

 The first seven register-reference instructions perform clear, complement, circular shift, and 
increment microoperations on the AC or E registers. 

 The next four instructions cause a skip of the next instruction in sequence when condition is 

satisfied. The skipping of the instruction is achieved by incrementing PC. 

 The condition control statements must be recognized as part of the control conditions. The AC 
is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of 
AC is zero (AC = 0) if all the flip-flops of the register are zero. 

 The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from 
counting. To restore the operation of the computer, the start-stop flip-flop must be set 
manually. 

Memory reference instructions 

 When the memory-reference instruction is decoded, D7 bit is set to 0. 

15   14 12    11 0 

I 000~110 Address 

 
 The following table lists seven memory-reference instructions. 

Symbol Operatio

n Decoder 

Symbolic Description 

AND D0 AC AC + M[AR] 

ADD D1 AC   AC + M[AR], E   Cout 

LDA D2 AC  M[AR] 
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STA D3 M[AR]    AC 

BUN D4 PC    AR 

BSA D5 M[AR]    PC, PC    AR + 1 

ISZ D6 M[AR]    M[AR] + 1, if M[AR] + 1 = 0 then PC    

PC+1 

 
 The effective address of the instruction is in the address register AR and was placed 

there during timing signal T2 when I = 0, or during timing signal T3 when I = 1. 

 The execution of the memory-reference instructions starts with timing signal T4. 

 

AND to AC 

This is an instruction that performs the AND logic operation on pairs of bits in AC and the 
memory word specified by the effective address. The result of the operation is transferred to 
AC. 

D0T4: DR M[AR] 

D0T5: AC AC DR, SC 
 

ADD to AC 

This instruction adds the content of the memory word specified by the effective address to the 
value of AC. The sum is transferred into AC and the output carry Cout is transferred to the E 
(extended accumulator) flip-flop. 

D1T4: DR  M[AR] 

D1T5: AC AC + DR, E Cout, SC        0 
 

DA: Load to AC 

This instruction transfers the memory word specified by the effective address to AC. 

D2T4: DR  M[AR] 

D2T5: AC  DR, SC 

STA: Store AC 

This instruction stores the content of AC into the memory word specified by the effective 
address. 

D3T4: M[AR]    AC, SC   0 

BUN: Branch Unconditionally 

This instruction transfers the program to instruction specified by the effective address. The 
BUN instruction allows the programmer to specify an instruction out of sequence and the 
program branches (or jumps) unconditionally. 

D4T4: PC  AR, SC   0 

BSA: Branch and Save Return Address 

This instruction is useful for branching to a portion of the program called a subroutine or 
procedure. When executed, the BSA instruction stores the address of the next instruction in 
sequence (which is available in PC) into a memory location specified by the effective 
address. 

M[AR]  PC, PC  AR + 1 M[135]

 21, PC 135 + 1 = 136 

0 

 
0 

0 
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0 

 

Figure2.10: Example of BSA instruction execution 

It is not possible to perform the operation of the BSA instruction in one clock cycle when we 
use the bus system of the basic computer. To use the memory and the bus properly, the BSA 
instruction must be executed with a sequence of two microoperations: 

D5T4: M[AR] PC, AR AR 

+ 1D5T5: PC AR, SC 0 

ISZ: Increment and Skip if Zero 

These instruction increments the word specified by the effective address, and if the 
incremented value is equal to 0, PC is incremented by 1. Since it is not possible to 

increment a word inside the memory, it is necessary to read the word into 
DR, incrementDR, and store the word back into memory. 

D6T 
4: DR M[AR]D6T5: DR DR + 1 

D6T4: M[AR] DR, if (DR = 0) then (PC PC + 1), 

SC 

Control Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Flowchart for memory-reference instructions 
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Input-output configuration of basic computer 

 A computer can serve no useful purpose unless it communicates with the 
external environment. 

 To exhibit the most basic requirements for input and output communication, we will 
use a terminal unit with a keyboard and printer. 

 

Figure: Input-output configuration 

 
 The terminal sends and receives serial information and each quantity of 

information haseight bits of an alphanumeric code. 

 The serial information from the keyboard is shifted into the input register 

INPR. 

 The serial information for the printer is stored in the output register OUTR. 

 These two registers communicate with a communication interface 
serially and with theAC in parallel. 

 The transmitter interface receives serial information from the keyboard 
and transmits it to INPR. The receiver interface receives information from 
OUTR and sends it to the printer serially. 

 The 1-bit input flag FGI is a control flip-flop. It is set to 1 when new 
information is available in the input device and is cleared to 0 when the 
information is accepted by the computer. 

 The flag is needed to synchronize the timing rate difference between 
the input deviceand the computer. 

 The process of information transfer is as follows: 

 

The process of input information transfer: 

 Initially, the input flag FGI is cleared to 0. When a key is struck in the 
keyboard, an 8-bit alphanumeric code is shifted into INPR and the input 
flag FGI is set to 1. 

 As long as the flag is set, the information in INPR cannot be changed by 
striking another key. The computer checks the flag bit; if it is 1, the 
information from INPR is transferred in parallel into AC and FGI is 
cleared to 0. 

 Once the flag is cleared, new information can be shifted into INPR by 
striking anotherkey. 

 
The process of outputting information: 

 The output register OUTR works similarly but the direction of 
information flow isreversed. 

 Initially, the output flag FGO is set to 1. The computer checks the flag bit; 
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if it is 1, the information from AC is transferred in parallel to OUTR and 
FGO is cleared to 0. The output device accepts the coded information, 
prints the corresponding character, and when the operation is completed, it 
sets FGO to 1. 

 The computer does not load a new character into OUTR when FGO is 0 
because this condition indicates that the output device is in the process of printing 
the character. 

 
Input-Output instructions 

 Input and output instructions are needed for transferring information to 
and from AC register, for checking the flag bits, and for controlling 
the interrupt facility. 

 Input-output instructions have an operation code 1111 and are recognized 
by the control when D7 = 1 and I = 1. 

 The remaining bits of the instruction specify the particular operation. 

 The control functions and microoperations for the input-output 
instructions are listed below. 

 

INP AC(0-7)  INPR, FGI  0 Input char. to AC 

OUT OUTR  AC(0-7), FGO  0 Output char. from AC 

SKI if(FGI = 1) then (PC  PC + 1) Skip on input flag 

SKO if(FGO = 1) then (PC  PC + 1) Skip on output flag 

ION IEN  1 Interrupt enable on 

IOF IEN  0 Interrupt enable off 

 
Table 2.2: Input Output Instructions 

 The INP instruction transfers the input information from INPR into the 
eight low-order bits of AC and also clears the input flag to 0. 

 The OUT instruction transfers the eight least significant bits of AC 
into the output register OUTR and clears the output flag to 0. 

 The next two instructions in Table 2.2 check the status of the flags and 
cause a skip of the next instruction if the flag is 1. 

 The instruction that is skipped will normally be a branch instruction to 
return and check the flag again. 

 The branch instruction is not skipped if the flag is 0. If the flag is 1, the 
branch instruction is skipped and an input or output instruction is 
executed. 

 The last two instructions set and clear an interrupt enable flip-flop IEN. 
The purpose of IEN is explained in conjunction with the interrupt 
operation. 

Interrupt Cycle 

The way that the interrupt is handled by the computer can be explained by     means of the 

flowchart shown in figure 2.13. 

 An interrupt flip-flop R is included in the computer. 

 When R = 0, the computer goes through an instruction cycle. 

 During the execute phase of the instruction cycle IEN is checked by the    control. 

 If it is 0, it indicates that the programmer does not want to use the 
interrupt, so control continues with the next instruction cycle. 

 If IEN is 1, control checks the flag bits. 

 If both flags are 0, it indicates that neither the input nor the output 
registers are ready for transfer of information. 

 In this case, control continues with the next instruction cycle. If either 
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flag is set to 1while IEN = 1, flip-flop R is set to 1. 

 At the end of the execute phase, control checks the value of R, and if it 
is equal to 1, it goes to an interrupt cycle instead of an instruction 
cycle. 

 

Figure 2.13: Flowchart for interrupt cycle 
 

Interrupt Cycle 

 The interrupt cycle is a hardware implementation of a branch and save 
return addressoperation. 

 The return address available in PC is stored in a specific location where it  
can be found later when the program returns to the instruction at which it  
was interrupted. This location may be a processor register, a memory 
stack, or a specific memory location. 

 Here we choose the memory location at address 0 as the place for storing the 

return address. 

 Control then inserts address 1 into PC and clears IEN and R so that no 
more interruptionscan occur until the interrupt request from the flag has 
been serviced. 

 An example that shows what happens during the interrupt cycle is shown in 

Figure 2.14: 

 
 

Figure 2.14: Demonstration of the interrupt cycle 
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1 

 Suppose that an interrupt occurs and R = 1, while the control is 
executing the instruction at address 255. At this time, the return address 
256 is in PC. 

 The programmer has previously placed an input-output service 
program in memory starting from address 1120 and a BUN 1120 
instruction at address 1. 

 The content of PC (256) is stored in memory location 0, PC is set to 1, 
and R is cleared to0. 

 At the beginning of the next instruction cycle, the instruction that is read 
from memory is in address 1 since this is the content of PC. The branch 
instruction at address 1 causes the program to transfer to the input-output 
service program at address 1120. 

 This program checks the flags, determines which flag is set, and then 
transfers the required input or output information. Once this is done, the 
instruction ION is executed to set IEN to 1 (to enable further interrupts), 
and the program returns to the location where it was interrupted. 

 The instruction that returns the computer to the original place in the main 
program is a branch indirect instruction with an address part of 0. This 
instruction is placed at the end of the I/O service program. 

 The execution of the indirect BUN instruction results in placing into PC 
the return address from location 0. 

Register transfer statements for the interrupt cycle 

 The flip-flop is set to 1 if IEN = 1 and either FGI or FGO are equal to 
1. This can happen with any clock transition except when timing 
signals T0, T1 or T2 are active. 

 The condition for setting flip-flop R= 1 can be expressed 
with the following register transfer statement: 

T0   T1   T2 (IEN) (FGI + FGO): R 

 The symbol + between FGI and FGO in the control 
function designates a logic OR operation. This is AND 
with IEN and T0 T1 T2 . 

 The fetch and decode phases of the instruction cycle must be 
modified and Replace T0,T1, T2 with R'T0, R'T1, R'T2 

 Therefore the interrupt 
cycle statements are 
:RT0: AR 0, TR PC 

RT1: M[AR] TR, PC 0 

RT2: PC PC + 1, IEN 0, R 0, SC 0 

 During the first timing signal AR is cleared to 0, and the content 
of PC is transferred tothe temporary register TR. 

 With the second timing signal, the return address is stored in 
memory at location 0 andPC is cleared to 0. 

 The third timing signal increments PC to 1, clears IEN and 
R, and control goes back to T0 by clearing SC to 0. 

 The beginning of the next instruction cycle has the condition RT0 
and the content of PC is equal to 1. The control then goes through an 
instruction cycle that fetches and executes the BUN instruction in 
location 1. 

 

Flow chart for computer operation. 

 The final flowchart of the instruction cycle, including the 
interrupt cycle for the basiccomputer, is shown in Figure 
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2.15. 

 The interrupt flip-flop R may be set at any time during the indirect or 

execute phases. 

 The control returns to timing signal T0 after SC is cleared to 0. 

 If R = 1, the computer goes through an interrupt cycle. If R = 0, the computer goes 

through an instruction cycle. 

 If the instruction is one of the memory-reference instructions, the 
computer first checks if there is an indirect address and then 
continues to execute the decoded instruction according to the 
flowchart. 

 If the instruction is one of the register-reference instructions, it is 
executed with one of the microoperations register reference. 

 If it is an input-output instruction, it is executed with one of the 
microoperation’s input-output reference. 

 

 
 

Figure: Flowchart for computer 

operation 
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